ARTC Melbourne-Brisbane Inland Rail Alignment Study

This working paper was produced appendiced a

Ma

aurecon

Halcrow

content has been superseded appendices.

Working Paper No. 10 **Development of Route**

Important note

This working paper is based on the outcome of Stage 1 of the study as reported in Working Paper No. 5. This concluded that a low capital cost scenario should be adopted for development and analysis in later stages of the study. This option included the use of existing lines, with some upgrading and possible deviations on the section between Narromine, the Werris Creek area and Narrabri. Accordingly this working paper includes an assessment of this section, as part of the Melbourne-Brisbane route.

Towards the end of Stage 2 of the study, in the process of trying to identify an economically viable route, the 'high capital cost' scenario identified in Stage 1 was further assessed and optimised using additional information gained during Stage 2 activities. The outcome of the analysis was that this scenario, using a shorter route, was determined to offer a better economic result than the low capital cost option.

This further analysis is reported in Working Paper No. 12, together with the conclusion that Stage 3 of the study should focus on the shorter route, which is identified as the '1690km Inland

. In this working pa persed of by frither will colving substant all new col-ant will be wicked on the final report of the substant of the sinal report of As a result, the assessment reported in this working paper of the section of route between Narromine and Narrabri will be superseded by further work which will assess a more direct route between these two centres involving substantial new construction.

This further assessment will be included in the final report of the study.

Contents

Page Number

Glo	ossary	iv
1.	Introduction	1
	 Overview Background to Melbourne – Brisbane Inland Rail Study objectives, stages and working papers: Roles of the Lead Technical Consultant (LTC) and the Financial and Economic Consultant (FEC) Stage 1 analysis Objectives of Washing Papers No. 10 	1 1 3 3
2	Approach to Development of Options	с С
۷.		0
	 2.1 Introduction 2.1.1 Extent of works 2.1.2 Context 2.2 Evaluation framework 	6 6 7
3.	Description of Alignment Options	8
	 3.1 Introduction 3.2 Reference case 3.2.1 Introduction 3.2.2 Melbourne to Parkes 3.2.3 Parkes to Moree 	8 8 8 12
	3.2.4 Moree to Bristhate 3.3 Deviations 3.3.1 Introduction 3.3.2 Methoduce Contents 3.3.3 Farkes to informet 3.3.4 Morie to Bristiane 3.4 Litic ade introovements	17 21 22 25 29 32
4.	Journey times	33
4	 4.1 Introduction 4.2 Onorational modelling resources as assumptions 4.2.1 Poterence case assumptions 4.2.2 Upgrate case assumptions 4.3 Surpmary 	33 37 39 40 41
. 5 C	Evaluation of options	42
by	 5.1 Introduction 5.2 Environment and land use 5.3 Capital works costings 5.4 Journey time 5.5 Analysis 5.6 Explanation of results 5.6.1 Reduction in distance 5.6.2 Avoiding reference case costs 5.6.3 Upgrades 	42 43 43 43 43 44 44 45 45

Table 1-1 Working papers	2
Table 3-1 Melbourne to Parkes section list	9
Table 3-2 Parkes to Moree section list	12
Table 3-3 Reference case bridge replacements	17
Table 3-4 Moree to Brisbane section list	18
Table 4-1 Journey time estimates for reference case, upgrades and deviations	33
Table 4-2 Journey time estimates for deviations bypassing multiple reference case sections	37
Table 4-3 Maximum Speeds at Curves	38
Table 4-4 Non Curve Related Speed Restrictions	40
Table 5-1 Cost per minute saved	44

List of figures

List of figures	
Figure 1-1 Melbourne Brisbane inland rail corridor (Stage 2) Figure 3-1 Melbourne to Parkes overview Figure 3-2 Melbourne to Parkes terrain Figure 3-3 Parkes to Moree overview Figure 3-4 Parkes to Moree terrain Figure 3-5 Parkes to Moree hydrology and floc ding Figure 3-6 Moree to Brisbane overview Figure 3-7 Moree to Brisbane overview Figure 3-7 Moree to Brisbane overview Figure 3-8 Melbourne to Parkes reference hase and horviations Figure 3-9 Junee to Stock Inbing. Figure 3-10 Parkes to Moree reference of case and deviations Figure 3-11 Previer to Emisbane reference case and deviations Figure 3-12 Moree to Brisbane reference case and deviations Figure 3-13 Toowoombe area	4 10 11 14 15 16 19 20 22 24 25 28 29 31
List of appondices	

Appendix A Bridge won's for Class 2 and Class 3 track upgrades App andix B Southbound journey time details Appendix C Analysis of cost per minute saved Appendix D Environmental summary data Appendix E Route Maps

Glossary

	ABS AC traction	Australian Bureau of Statistics Alternating Current traction motors; used in newer diesel-electric
	4000	locomotives
	ACCC	Australian Competition and Consumer Commission
	alignment	The exact positioning of track; may be compared with 'route', which gives only a very general indication of the location of a railway
	AKA	Australasian Railway Association
	area route	For the purposes of the study, a route over an entire area, i.e. areas A, B, C or D
	ARTC	Australian Rail Track Corporation
	articulated	Wagons comprising two or more units, with adjacent ends of individual
	wagons AS 4292	units being supported on a common bogie and permanently coupled Australian Standard for Railway Safety in six parts 1995-9.
	ATC	Australian Transport Council
	ATEC	Australian Transport and Energy Corridor Ltd
	ATMS	Advanced Train Management System; communication-based safeworking system currently being developed by ARTC
	ATSB	Australian Transport Screty Bureau
	axle load	The load transmitted to the track by two wheels of one axle of a bogie
	backhaul	Returning wegons to a point where they can be used for their next assignment ineight moving to the ecoosite direction to the main flow
	BAH	Booz Al'sh Harhiton (r.t.) Booz & Co)
	bank engine	Locomotive used to essist a train on part of its journey, typically to climb a sleep grade: with grades are called 'banks'
	BAU	Business Actusual
	BCR	Benefit Cost Ratio
	BITRE	Bureau of Mitastructure, Transport and Regional Economics (formerly
	bogie	two series and a sub-frame under each end of a wagon
	воот	Sciid, C vn, Operate, Transfer
	break of gauge	Where a line of one track gauge meets a line of a different track gauge.
	broad gauge	Raiway track gauge of 1600 mm; used in Victoria except on interstate main lines and some other lines
0	STE	Bureau of Transport Economics; now the BITRE
M	BTRE	Bureau of Transport and Regional Economics; now the BITRE
~	cant	Difference in the height of two rails comprising the railway track; cant may also be described as superelevation. It allows a train to travel
Ø	2	through a curve at a speed higher than otherwise. Camber on the curve of a road has a similar function.
	capex	capital expenditure
	BCACBA	Cost-Benefit-Cost Analysis
	CCM	Capital cost model
	coastal route	The existing rail route from Melbourne to Brisbane via Sydney
	corridor	A strip of land with a width measured in kilometres suitable for a railway.
		Study of a corridor leads to the identification of route options.
	CountryLink	CountryLink is part of the Rail Corporation of New South Wales
		(RailCorp). It operates passenger trains from Sydney to Melbourne,
		Sydney to Brisbane and to NSW regional centres.
	CPI	Consumer Price Index
	CSO	Community Service Obligation
	DBFM	Design, Build, Finance, Maintain

	DC	Direct Current; form of electric traction
	DIRN	Defined Interstate Rail Network
	distributed	The practice of providing additional locomotive power within or at the
	locomotives	rear of a train as well as in front.
	DITRDLG	Australian Government Department of Infrastructure, Transport,
		Regional Development and Local Government
	DMU	Diesel multiple-unit passenger train
	DORC	Depreciated Optimised Replacement Cost
	double stacking	Placement of one intermodal freight container on top of another in a specially designed well-wagon
	EBITDA	Earnings before Interest, Tax, Depreciation and Amortisation
	EIA	United States Energy Information Administration
	EIRR	Economic Internal Rate of Return
	energy efficiency	Ratio of the transport task to the energy input: a measure of energy
	chorgy childreney	efficiency is tonne/km per megaJoule (MJ)
	energy intensity	Ratio of energy input to transport task; the inverse of energy efficiency;
		a measure of energy intensity is MJ/net tonne/km
	FEC	Financial and Economic Consultant for the Melbourne Erisbane Inland
		Rail Alignment Study, i.e. PricewaternouseCoopers with ACIL Tasman and SAHA
	five-pack wagon	Five wagons operated as one, either through being permanently
	fuel consumption	Measured in litres pay was a view whether (Litres/att) of sometimes
		litres per 1 000 occess to one kilometre ditroch 000 g k - sometimes per
		tonnes are used instead of a ross tonn is
	GATR	Great Australian Trunk Roil System
	GDP	Gros Domestic Product
	GIS	Grand Information Statem
	aross	
	GST	Conde and Service Tax
	atk	Cross and Dervices ray
	yik S	would c'a vain wolled by kilometres travelled
	ta - C	nour
	IA	Infrestructure Australia
	IFA	International Energy Agency
	IGA	In e governmental Agreement (1997) between the Commonwealth
		SW. Victoria, Queensland, Western Australia and South Australia
		which led to the establishment of ARTC
, el	IPART	NSW Independent Pricing and Regulatory Tribunal
61	IRR	Internal Rate of Return
	ka	kilogram(s)
	^y α/m	kilograms per metre
v v	km	kilometre(s)
	km/h	kilometres per bour
	k/\//	kilowatt a unit of nower
	1	litro(s)
	L/atk*1000	Fuel consumption expressed in litres per gross toppe kilometre x 1000
	Lond bridging	Perloament of and transport with land transport between two and
	lanu-bhuging	norts, e.g. between Brisbane and Melbourne
	I FP	Local Environmental Plan
	Line sector	In the context of the study, a length of line connecting two nodal points
		The maximum permissible height and width dimensions for a rail vehicle
	issuing gaage	and its load; see structure gauge
	LTC	Lead Technical Consultant for the Melbourne-Brisbane Inland Rail
		Alignment Study, i.e. Parsons Brinckerhoff with Aurecon and Halcrow

	mass	The mass of an object is measured in kilograms; mass and weight are used interchangeably in the study
	M-B	Melbourne-Brisbane
	MIMS	Maintenance Integrated Management System
	MJ	megaJoule: a unit of both energy and work
	mm	millimetre(s)
	MPM	Major Periodic Maintenance; planned maintenance on infrastructure assets at intervals of more than once a year.
	mt	million tonnes
	mt pa	million tonnes per annum
	narrow gauge	Railway track gauge of 1067 mm; used in Queensland except on the interstate line from Sydney to Brisbane
	NCOP	National Code of Practice
	node	In the context of the study, a point at which alternative routes diverge.
	NPV	Net Present Value
	NPVI	Ratio of Net Present Value to Investment Costs (i.e. capital costs)
	NSRCS	North-South Rail Corridor Study completed in 2006
	NSW	New South Wales
	ntk	net tonne kilometres; the paylose of a train multiclied by kilometres travelled
	opex	operating expenses
	payload	Weight of products and containers carned on wagons
	PB	Parsons Brincken off, Lvad Technical Coupultant
	PwC	PricewaterhuseCoopers, Financial and Economic Consultant
	Qld	Queens' and
	QR	Queensland Rail, a corporation owned by the Queensland Government
	RailCorp	SairCorp (Rail Comporation of NSW); owns rail track in the Greater Sydney region, opportes passenger trains in that region, [delete comma] and (under the name Countrylink) to Melbourne and Brisbane and region at NSW
	RAMS	REL Access Management System; manages and records access to ARTC track; RAMS is licensed to other track owners.
	RCRM	Portine Corrective and Reactive Maintenance; maintenance, inspections and unplanned minor maintenance carried out annually or
	Reference train	Subject the interview of the second s
	יים	Rail Infrastructure Corporation, NSW, owner of NSW rail network other
Mel	final	than metropolitan sections owned by RailCorp. Interstate track and certain other sections are leased to ARTC.
	RL	Stands for reduced level in surveying terminology; elevation relative to a specific datum point
0	, OA	Return on Assets
Ÿ	route	In the context of the study, primary description of the path which a railway will follow.
	RIA	Roads and Traffic Authority - Various states
	SA	
	safeworking	Signalling system and associated rules that keep trains a safe distance apart
	SKIVI	
	SNP	Short North Project; capacity increases for freight currently being planned for the railway between Strathfield and Broadmeadow; 'short north' refers to the railway between Sydney and Newcastle.
	SPV	Special Purpose Vehicle established for the development and/or the operation of a project.
	SSFL	Southern Sydney Freight Line; independent track for use by freight trains between Macarthur and Chullora, currently under construction

standard gauge	Railway track gauge of 1435 mm; used on the ARTC network and for
structure gauge	Specification for the position of structures such as overhead bridges,
	tunnels, platform, etc, relative to a railway track, to allow adequate
superfreighter	Term used to describe high-priority intermodal freight trains
tal	tonnes axle load
tare	Weight of an empty wagon
TCI	Track Condition Index; TCI is an indicator of the condition of track by compilation of a number of measures of its geometry
TEU	Twenty-foot Equivalent Unit, the standard unit measure of shipping container size
t pa	tonnes per annum
train kilometre	A standard measure of track usage; number of trains multiplied by the total kilometres travelled
TSR	Temporary Speed Restriction
TTM	Train Transit Manager
Vic	Victoria
VicTrack	VicTrack, owner of Victoria's rail no work; interstate wack and certain other lines are leased to ARTC
VOC	Vehicle Operating Cost
WA	Western Australia
well-wagon	A wagon where the central wading cenk is lover that the bogies at
\ \ /D	either end, to allow higher loads to be carded with the loading gauge
WTT	Working Typetalia
VVII	WORKING WITCHING SUITO
Ň	nge collaneen war
NOT	the The betue
15 11	ant have
This	
Bri	nte or
er c	or or t
111.45	ep
1000 1011	
lell cina.	
NIC	
the	
Ya	
V	

Introduction 1.

1.1 **Overview**

In March 2008 the Australian Government announced that the Australian Rail Track Corporation (ARTC) had been asked to conduct the Melbourne-Brisbane Inland Rail Alignment Study.

The announcement stated that in developing a detailed route alignment, the ARTC would generally follow the far western sub-corridor identified by the previous North-South Rail Corridor Study. This study, completed in June 2006, established the broad parameters for a potential future inland rail corridor between Melbourne and Brisbane.

1.2 Background to Melbourne – Brisbane Inland Rail

The railways of NSW, Victoria and Queensland care from the 19th century. They were constructed using different gauges and developed for differing purposes. At cresent, the only north-south rail corridor in eastern Fustralia runs though Sydney. North of Sydney the railway runs fairly close to the coas For that reason, the existing Mc Journe-Brisbane line is referred to as the coastal route throughout this work in a paper.

In September 2005 the Australian Government commission ed the North-South Rail Corridor Study. The study unpertool a high 's el analysis of various corridors and routes that had been proposed is: an inland freight railway between Melbourne and Brisbane.

In its Ma.ch 2008 announcement, the Government stated that the Melbourne-Brisbane Inland Rail Michment Study which build on previous work by undertaking a more detailed engineering, land corrido, and environmental assessment, to allow scoping of the project's capital cost Developring involving cd custom a s. **1.3 Study St.** Tris objective determine: capital cost, in the amouncement, the Minister for Infrastructure, Transport, Regional Development and Local Covernment requested a customer focused and consultative study involving consultation with state governments, industry, local governments and major rail

Study Objectives, stages and working papers:

The objectives of the Melbourne-Brisbane Inland Rail Alignment Study (the study) are to

- The optimum alignment of the inland railway, taking into account user requirements and the economic, engineering, statutory planning and environmental constraints. The alignment will be sufficiently proven up so it can be quickly taken through the statutory planning and approval process and into the detailed engineering design and construction, should a decision be taken to proceed;
- The likely order of construction costs +/-20%;
- The likely order of below-rail (infrastructure) operating and maintenance costs;
- Above-rail operational benefits;
- The level and degree of certainty of market take up of the alignment;
- A project development and delivery timetable;
- A basis for evaluating the level of private sector support for the project.

- Stage 1 Determination of the route for further analysis;
- Stage 2 Engineering, environmental and land base analysis;
- Stage 3 Development of the preferred alignment.

The study is being carried out in three stages, as follows:

A series of working papers is being produced within each stage. A list of the planned working papers follows.

Table 1-1 Working papers

St	age	Workin	ig paper	Lead Responsibility
St	age 1	WP1	Demand and Volume Analysis	FEC
		WP2	Review of Route Options	LTC
		WP3	Stage 1 Capital Works Costings	LTC
		WP4	Preliminary Operating and Vicintenance Cost Analysis	LTC
		WP5	Stage 1 Economic and Financial Analysis and Identification of the Route for Fundar Analysis	OTEC
St	age 2	WP6	Detign Stanicalds	LTC
		WP7	Preliminary Environmental Assessment	LTC
		WF,2	Frediminally Land Assessme in	LTC
	in	WP16	Development of Route	LTC
.0	1	WP11	Stage 2 كياتة Costings	LTC
i G W	11	2, היש	Stage 2 Economic and Financial Analysis	FEC
-his	. 0	a' t	the	
St	e de 3	V.179	Engineering Data Collection	LTC
ert	60	WP 3	Preferred Alignments Environmental Assessment	LTC
Ince		VP14	Preferred Alignments Land Assessment	LTC
1000 1	11	WP15	Refinement of Preferred Alignments	LTC
Nelle sin		WP16	Stage 3 Capital Works Costing	LTC
r' ne''		WP17	Delivery Program	LTC
1 41		WP18	Economic and Financial Assessment	FEC
V		WP19	Policy Issues, Options and Delivery Strategies	FEC

Note that the list of working papers has been revised since the completion of Stage 1 of the study. Some working papers have been re-titled and/or re-scheduled. In addition, the working papers listed as outputs of Stage 3 will appear as sections or appendices within an integrated final report of the study rather than being published as standalone documents.

1.4 Roles of the Lead Technical Consultant (LTC) and the **Financial and Economic Consultant (FEC)**

The study's activities are headed by two lead consultants whose activities are coordinated by ARTC.

The Lead Technical Consultant is responsible for engineering and environmental work and associated activities, including railway operational analysis. The Financial and Economic Consultant is responsible for financial and economic analysis. The two consultants work jointly and collaboratively with each other.

The Lead Technical Consultant (LTC) is Parsons Brinckerhoff (PB) and the Financial and Economic Consultant (FEC) is PricewaterhouseCoopers (PwC). Each consultant acts independently and each has a lead responsibility for specific working dapers. Whilst this occurs the other consultant plays a support role for that particular, working paper.

Parsons Brinckerhoff has engaged Halcrow to support it in alignment development, operations and maintenance costing and Aurecon to support it in engineering and alignment development. Aurecon has in turn engaged Curric and Brawn to assist in capital costing.

PricewaterhouseCoopers has engaged ACILi asman to under take volume and demand analysis and support it in economic revieiv, and SAHA for peer review.

Stage 1 analysis 1.5

Stage 1 analysed number is rout as within the study area in order to determine the route to be analysed in Stage 2 (see v lorking Paper No. 5 Stage 1 Economic and Financial Analysis end the dentification of the Roughor Further Analysis).

The rout to cootamundra, Parkes, Narronme, D 2000, Werris Creek and Moree to North Star near Goondiwindi; with new construction from North Star to Brisbane via Toowoomba. North of Parkes the railway would Melbourr by the f require parts of the existing route to be upgraded, including minor deviations to improve its a'ignmen*

The analysis retained a number of options for further analysis in Stage 2 of the study; including possible routes between Junee and Stockinbingal, Premer and Emerald Hill avoiding Werris Creek, North Star and Yelarbon near Inglewood, and in the vicinity of Toowoomba.

The route for further analysis is shown in the map below.

Stage 2 has conducted engineering, environmental and land baseline analysis of the route sections within the area shown to identify the route for refinement in Stage 3.

Melbourne-Brisbane Inland Rail Alignment Study

Figure 1-1 Melbourne Brisbane inland rail corridor (Stage 2)

1.6 **Objectives of Working Paper No. 10**

The purpose of this working paper is to document the alignment options within the Stage 2 study area, the process of their development and determine a short-list to be taken forward to Stage 3 of the study. It identifies and describes the reference case, upgrades and various deviations for the Inland Rail Alignment Study and presents the journey times for the various alignment options along the route.

The alignment options are evaluated in this working paper based on an assessment of the capital cost required to save journey time, with critical environmental aspects also being

.al aspe.

Approach to Development of Options 2.

2.1 Introduction

2.1.1 Extent of works

The general extent of works covered by the Inland Rail Alignment Study includes the following:

- Planning and environmental;
- Permanent way:
- **Tunnel structures:**
- Bridges and culverts;
- Earthworks:

- Signalling and communications; Level crossings; Hydrology:

- Construction;
- Maintenanco.

Melbour' hy the

Context 2.1

as the ignment Study. of the ignmeded ppendices. Rail perseded appendices. Rail perseded appendices. Rendu and its appendices. 2.1.2 Context Argument options along the Stage 2 study corridor were considered in broad terms and a short-list of options was selected. The options generally comprised sections of:

- Ne migreen field) tracit;
- New (anditional) track adjacent to existing track;
- Upgrades of existing track;
- Existing track with essential work undertaken.

Forme greenfield sections, high-level horizontal and vertical design was carried out and vpical details were considered. From these prepared designs, earthworks quantities were calculated, which included an estimate of the number and type of structures generated.

For sections of existing track, essential works (such as replacements of speed restricted timber bridges) were identified.

Many sections of existing track have maximum speeds restricted to below 115km/h because of the quality of the infrastructure. Opportunities to upgrade the existing track were identified and the upgrade requirements and construction cost to improve train journey times on these sections was estimated.

2.2 **Evaluation framework**

This working paper provides the journey time estimates and the input data to the cost estimate.

The evaluation undertaken of the short-listed options is based on three broad criteria:

- . Cost;
- Journey time saving;
- Environmental impacts.

Melbourners content of the study and its appendices.

Description of Alignment Options 3.

3.1 Introduction

Stage 1 established a refined study corridor to be taken forward to Stage 2. The route generally comprises existing track from Melbourne to Parkes via Junee, and then to Narromine, Werris Creek, Moree and North Star, greenfield railway to Inglewood, Millmerran, Gowrie, Grandchester/Rosewood and Kagaru, and then existing track to Acacia Ridge. Within the study area there are opportunities to improve the journey time by upgrading existing track, bypassing towns and building deviations.

A reference case has been defined to allow potential journey time savings of upgrades and deviations to be compared. The reference case is the alignment with the minimum capital expenditure required to operate Melbourne to Brisbane Inland Rail effectively.

The deviations provide opportunities for journey time savings and will be selected on the basis of a cost per minute saved criteria, with pognisance of ctal journey time and other key issues such as the environment. The deviations will replace sections of the reference case where the existing alignment is a rectliction to a lower journey time.

Journey time savings can also be achieved by upgrading track of existing alignments. The in superseas cost and journey time saving of track upgrades were also cursidered and will be selected on the basis of cost per romute saved.

3.2

Harodyction C

The reference case is established using the following assumptions:

- existing class 1 and Class 2 track will be used where available;
- e.risting Class 3 or lower track will be upgraded to Class 1 track;
- train reverses will be eliminated by constructing triangles where required;
- spridges constraining operation (with severe speed restrictions) will be replaced or up graded;
- standard gauge track will be built within the existing corridor, adjacent to existing narrow gauge track where appropriate;
- Melbourn, hu the fi greenfield track will be built where no existing corridor exists. •

3.2.2 **Melbourne to Parkes**

The reference case route from Melbourne to Parkes comprises existing ARTC tracks.

The Melbourne to Junee section uses the existing Class 1 Main South line.

The Junee to Parkes section uses the Cootamundra to Lake Cargelligo line and Stockinbingal to Parkes line. It is understood that ARTC will upgrade the Cootamundra to Parkes (via Stockinbingal) route to Class 1 capable of 21 tonne axle loads at 115 km/h.

The reference case for Melbourne to Parkes is made up of the sections listed in the Table below. Maps of the area showing an overview of the route and the terrain follow the table. More detailed route maps are contained in Appendix E.

	Section	Description	Line Treatment
	A01	Melbourne to Mangalore	Existing, Class 1
	A02	Mangalore to Wodonga (south)	Existing, Class 1
	A03a	Wodonga deviation	Class 1 under construction
	A04	Wodonga (north) to Junee	Existing, Class 1
	B01	Junee to Junee (east)	Existing, Class 1
	B02a1	Junee (east) to Illabo	Existing, Class 1
	B02a2	Illabo to Bethungra (south)	Existing, Class 1
	B03	Bethungra (south) to Bethungra (north)	Existing, Class 1
	B04	Bethungra (north) to Frampton (south)	Existing, Class 1
	B05	Frampton (south) to Frampton (north)	Existing, Class 1
	B07	Frampton (north) to Cootamundra (south)	Existing Class 1
	B08	Cootamundra (south) to Battora	Plauned Class 1 upgrade
	B10	Bauloora to Yeo Yeo (south)	Planned Class 1 upgrade
	B11	Yeo Yeo (South) to Yeo Yeo (North)	Planned Class 1 upgrade
	B12	Yeo Yer (nurth) to Stockinbingal	Planned Class 1 upgrade
	B15	ວ`ockir.`າii gal to ວັດວະເກbinຼາ.'' (north)	Planned Class 1 upgrade
nisv	B16	ີ່ Lockinbingal (nor h) to Maleeja	Planned Class 1 upgrade
	518	valeeja o Parkes (south)	Planned Class 1 upgrade
Irne	B19	Parkes (south) to Parkes (north)	Planned Class 1 upgrade
Melbott fi by the fi	nal		

Table 3-1 Melbourne to Parkes section list

Figure 3-1 Melbourne to Parkes overview

Figure 3-2 Melbourne to Parkes terrain

3.2.3 Parkes to Moree

The reference case route from Parkes to Moree comprises existing ARTC tracks with the exception of short greenfield sections at Binnaway and Werris Creek to remove the existing reversals.

The Parkes to Dubbo section uses the Class 2 Parkes to Narromine line and the Class 2 Main West line.

Between Dubbo and Binnaway the Class 2 Dubbo to Coonamble line, Class 2 Troy Junction to Merrygoen line and Class 2 Wallerwang to Gwabegar line are used, with a greenfield section to remove the reversal at Binnaway.

The Binnaway to Moree section uses the existing Class 2 Binnaway to Werris Creek line, with a new greenfield section to remove the reversal at Werris Creek, and Class 1 Werris Creek to Mungindi line.

The reference case for Parkes to Moree is made ve of the sections insted in Table 3-2 below. Maps of the area showing an overview of the route and the traction follow the table. A hydrology map of the area has also been included due to the nooding issues in the area. More detailed route maps are contained in Appendix F.

	Section	Description of Alleger apt	Line Treatment
	B20a1	Parker (north) (o Narromine (sout())	Existing, Class 2
	B20a2	Nar omine (south) (c Narromine	Existing, Class 2
	C01a1	Narromne to 7 'arromine (east)	Existing, Class 2
	ເກ.a2	Narrom.re (east) ເກັບປາກາງvest)	Existing, Class 2
.61	C02	D גראסס (vicst) נס Dubbc (north east)	Existing, Class 2
This	C03a1	Dubto (north east) to Barbigal (west)	Existing, Class 2
	C1 ₂ 32	Sarbigal vest) to Barbigal (east)	Existing, Class 2
e	C0323	Barbigal (east) to Muronbung (south)	Existing, Class 2
	C-3a4	Muronbung (south) to Muronbung (north)	Existing, Class 2
100	C03.5	Muronbung (north) to Boomley (south)	Existing, Class 2
Men	C03a6	Boomley (south) to Boomley (north)	Existing, Class 2
, ne	C03a7	Boomley (north) to Merrygoen (south)	Existing, Class 2
and the	C03a8	Merrygoen (south) to Merrygoen (north)	Existing, Class 2
r Q	C03a9	Merrygoen (north) to Toogarlan (south)	Existing, Class 2
	C03a10	Toogarlan (south) to Toogarlan (north)	Existing, Class 2
	C03a11	Toogarlan (north) to Piambra (south)	Existing, Class 2
	C03a12	Piambra (south) to Piambra (north)	Existing, Class 2
	C03a13	Piambra (north) to Binnaway	Existing, Class 2
	C04b1	Binnaway to Binnaway (east)	New, Class 1
	C04a4	Binnaway (east) to Ulinda (north)	Existing, Class 2
	C04a5	Ulinda (north) to Ulinda (south)	Existing, Class 2
	C04a6	Ulinda (south) to Oakey Creek	Existing, Class 2
	C04a7	Oakey Creek to Premer (west)	Existing, Class 2

Table 3-2 Parkes to Moree section list

Section	Description	Line Treatment
C04a8	Premer (west) to Premer (central)	Existing, Class 2
C04a9	Premer (central) to Premer (north)	Existing, Class 2
C04a10	Premer (north) to Premer (east)	Existing, Class 2
C05a1	Premer (east) to Spring Ridge	Existing, Class 2
C05a2	Spring Ridge to Turilawa (high speed west)	Existing, Class 2
C06a1	Turilawa (high speed west) to Turilawa (low speed south)	Existing, Class 2
60	Turilawa (low speed south) to Turilawa (low speed north)	New, Class 1
C06a2	Turilawa (low speed north) to Turilawa (high speed north)	Existing, Class 1
C07a1	Turilawa (high speed north) to Breeza	Existing, Class 1
C07a2	Breeza to Emerald Hill	Existing, Class 1
208	Emerald Hill to Baan Baa	Existing, Class 1
209	Baan Baa to Narrabri (south)	Existing, Class 1
210	Narrabri (south) to Narrabri (nort)	Exist
211	Narrabri (north) to Moree (souin)	Existing, Class 2
C17a1	Moree (south) to Mor (east)	Existing, Class 2
C17a2	Moree (east) to Mores (North-east)	Upgrade, Class 3 to Class 1
C17a3	Monce (north east) to Camurra (south)	Upgrade, Class 3 to Class 1
21791	Capaurra (ຣັບນຳ) to Mouse (ກິດາເຕັ	Upgrade, Class 3 to Class 1
arisb arisb arisb arisb	ane has b still tent of the still port of the still	
	ection 04a8 04a9 04a10 05a1 05a2 06a1 60 06a2 07a1 07a2 08 09 10 11 17a1 17a2 17a3 17a1	Description 04a8 Premer (west) to Premer (central) 04a9 Premer (central) to Premer (north) 04a10 Premer (central) to Premer (north) 05a1 Premer (east) to Spring Ridge 05a2 Spring Ridge to Turilawa (high speed west) 06a1 Turilawa (high speed west) to Turilawa (low speed south) 60 Turilawa (low speed south) to Turilawa (low speed north) 06a2 Turilawa (low speed north) to Turilawa (high speed north) 07a1 Turilawa (low speed north) to Breeza 07a2 Breeza to Emerald Hill 08 Emerald Hill to Baan Baa 09 Baan Baa to Narrabri (south) 10 Narrabri (north) to Moree (soun) 17a2 Moree (south) to Moree (soun) 17a3 Moree (north east) to Camurra (south) 17a4 Camurra (south) to Moree (north-east)

Figure 3-3 Parkes to Moree overview

Figure 3-4 Parkes to Moree terrain

Figure 3-5 Parkes to Moree hydrology and flooding

There are many areas along the existing lines where speed restrictions occur. These are due to a number of factors including bridge condition, level crossings and proximity to towns. If the speed restrictions were removed there would be significant journey time savings. The speed restrictions from bridges are predominately due to ageing timber or steel structures that require speed restrictions to carry various axle loads. A number of the bridges along the reference case route were considered unsuitable for servicing the inland railway. The bridge replacements in Table 3-3 below have been assumed in the reference case:

Section	Description	Location (km)	Existing Speed Restriction	Assumed Speed Restriction
C02	Macquarie River Bridge	462.988	15	80
C03a1	Beni Creek Bridge	480.507	30	80
C03a4	Baragonumble Creek Bridge	509.099	40	80
C03a5	Elong Elong Bridg:	515.710	30	80
C03a6	Boomley Creek Eridge	524 (87	40	80
C03a11	Butheroo Creek Bridge	+.36.37?	40	80
C03a12	Piamhra Bridge	449.53:	20	80
C04a6	Woe tailba Eric'ge	1(5.331	40	80
C05a1	Premer 5 idge	529.755	40	80
C05a1	Cox's Creek Erndge	520.017	40	80
C10	Namoi Triver Bridge	£65.755	20	80
C10	Narr avri Bridge	569.930	30	80

Table 3-3 Reference case bridge replacements

The existing railway between Morae and North Star is Class 3 and upgrade to Class 1 has been inclused in the reierence case. A list of the bridges which are assumed to be upgraded is in Table A2 in Appendix A.

3.2.4 Movee to Brisbane

This The helbourner tr by the Lie reference case route from Moree to Brisbane comprises a mixture of greenfield routes, Onew railway an acent to existing QR narrow-gauge tracks and upgrades to existing standard gadge tracks.

The Noree to Boggabilla section proposes an upgrade of the existing (Class 3) standard pauge Moree to North Star line and a rebuilt section of the existing derelict standard gauge North Star to Boggabilla line.

The Boggabilla to Inglewood section proposes a greenfield section between Boggabilla and the Kildonan border crossing and a new track constructed adjacent to the existing narrow gauge alignment of the Warwick to Dirranbandi line.

The Inglewood to Oakey section proposes a greenfield section between Inglewood and Millmerran, a new track constructed adjacent to the existing narrow gauge alignment between Millmerran to Cecilvale, a greenfield section between Cecilvale and Yargullen, a combination of greenfield and rebuild of the QR Cecil Plains line between Cecilvale and Yargullen and a greenfield section adjacent to the existing narrow gauge Dalby to Toowoomba line to Oakey.

The Oakey to Brisbane section uses a greenfield section adjacent to the existing narrow gauge Toowoomba to Dalby line, a greenfield alignment down the range from Gowrie to Gatton, new track adjacent to the existing narrow gauge Toowoomba to Rosewood line between Gatton and Grandchester, a greenfield section between Grandchester (west of

Rosewood) and Kagaru, and the existing standard gauge Class 1 coastal route from the NSW border to Acacia Ridge.

The reference case for Moree to Brisbane is made up of the sections listed in Table 3-4 below. Maps of the area showing an overview of the route and the terrain of the area follow the table. More detailed route maps are contained in Appendix E.

	Section	Description	Line Treatment
	D01a	Moree (north) to North Star	Upgrade, Class 3 to Class 1
	D02a	North Star to Boggabilla	New, Class 1 within corridor
	D03c	Boggabilla to Kildonan	New, Class 1
	D04a	Kildonan to Yelarbon	New, Class 1 within corridor
	D06a	Yelarbon to Inglewood	New, Class 1 vailtin corridor
	D07c	Inglewood to Millmerran	New, Class 1
	D08a	Millmerran to Convale	New, Class 1 within corridor
	D14c	Cecilvale (3)Yargullen	New, Class 1
	D15a	Yargutten to Crakey	New, Class 1
	D16a	Oakey to Grwing	New, Class 1 within corridor
	524C	Gowrie Co Gatton (QT ontion)	New, Class 1
S S	D25c	Caton to Crendchester / Rosewood (QT option)	New, Class 1
This	D26c	Grannchester (Nosewood to Kagaru (QT option)	New, Class 1
	८ ?८व	Kagaru to Acacia Ridge	Existing, Class 1
Melbourne by the fi	ts col	port	

 Table 3-4 Moree to Brisbane section list

Figure 3-6 Moree to Brisbane overview

Figure 3-7 Moree to Brisbane terrain

Deviations 3.3

3.3.1 Introduction

The Melbourne to Brisbane inland railway will run on existing sections of track that were designed to connect freight sources with their closest capital city, not for a Melbourne-Brisbane route. Also, most existing lines were not designed for the superfreighters proposed for use on Inland Rail. For these reasons there are a number of opportunities to improve the alignment along parts of the reference case.

The deviations are all between Junee and Brisbane, with none required between Melbourne and Junee as the existing Class 1 Main South line is considered adequate.

The main purpose of the deviations is to improve the journey time for Inland Rail, usually by providing a shorter and faster alignment. Some of the main features of the deviations are summarised in the following sections. A comparison of both the lengths and journey times of the deviations, upgraded alignments and the reference case alignments are provided in section 4 of this working paper.

nentri cost a cred i i ection 5 o cuther scalysis ras bea. In e deviations the existing track cane. This will be investigated in Stage The environmental impacts, incremental cost and journey time savings of cotential journey time improvements is considered in Section 5 of the vorking paper. A short-list of options to be taken to Stage 3 for further analysis, has been selected. C

In the case of some deviations the existing track could remain and serve as a crossing loop or passing lane. This will be investigated in Stage 3.

3.3.2 **Melbourne to Parkes**

Figure 3-8 below shows the possible deviations to replace sections of the reference case between Melbourne and Parkes. Figure 3-9 shows the area between Junee and Maleeja which contains the majority of the deviations for this area.

Figure Scioourne to Parkes reference case and deviations

Innee to Stockinbingal (B1c & B14) – major greenfield

Between Junee to Stockinbingal, a greenfield section has been considered. The option provides a direct route from Junee on the Main South line to Stockinbingal on the Stockinbingal to Parkes line. This option bypasses low speed curves and steep grades at the Bethungra Spiral and Cootamundra, and low speed curves on the Cootamundra to Stockinbingal line. This new section would provide an alternative route to the existing Junee to Stockinbingal route. The new section would consist of approximately 51 km of Class 1 track, compared with approximately 86 km via the reference case route. The deviation comprises generally greenfield construction, with approximately 0.85 km of existing track retained at Junee and approximately 0.4 km of new construction through the urban area of Junee.

Illabo to Stockinbingal (B14a) - major greenfield

The Bethungra to Stockinbingal section is a greenfield section. The option provides a direct route from Bethungra on the Main South line to Stockinbingal on the Stockinbingal to Parkes line. This option bypasses low speed curves and steep grades at the Bethungra spiral and Cootamundra and low speed curves on the Cootamundra to Stockinbingal line. The section

would provide an alternative route to the existing Bethungra to Stockinbingal route. The section would comprise approximately 39 km of Class 1 track, compared to approximately 68 km via the reference case route.

Bethungra deviation (B03a)

The purpose of the deviation is to remove low speed curves at the Bethungra spiral on the Main South line. The deviation would consist of approximately 8 km of Class 1 standard gauge track, as well as two tunnels with a total approximate length of 3.1 km. Deep cuttings along a different alignment may provide an alternative and optimised solution in this area.

Frampton deviation (B05a)

The purpose of the deviation is to remove low speed curves at Frampton on the Main South line. The deviation would consist of approximately 5 km of Class 1 standard gauge track. The deviation includes a cutting up to 24 m deep.

Frampton to Cootamundra deviation (B07a)

The purpose of the deviation is to remove low spand curves south of Cootamundra on the Main South line. The new deviation would concist of approximately 5 km of Class 1 standard gauge track. It is noted that the new alignment crosses the existing alignment five times; construction would be difficult and would require possession of the raiway whilst these crossings are built.

Cootamundra bypass (509)

, ce The Cootamundra deviation is a greenfield section. The purpose of the deviation is to remove low speen curves at Co. variandr. and by pass the town of Cootamundra. The deviation would consist of approximately 10 km of Class 1 standard gauge track, including one tunnel approximately 2.2 km long.

Yes Yeo deviation (B11a)

The purpose on the doviation is to remove low speed curves at Yeo Yeo. The deviation would consist of approximately 3 km of Class 1 standard gauge track. It is assumed 1.7 km will be greenfine construction and 1 km will have the existing track retained.

Stockinbinga' bypass (B17)

Thi Melbournest Melbourner The Yeo Xeo to Maleeja section is a greenfield section. The purpose of the option is to provide a direct route from Yeo Yeo on the Cootamundra to Stockinbingal line to Maleeja on the Stockinbingal to Parkes line. The option bypasses low speed curves at Yeo Yeo and the own of Stockinbingal. The section would provide an alternative route to the existing route from Yeo Yeo to Maleeja. The section would consist of approximately 13 km of Class 1 track.

Parkes bypass (B19a)

The Parkes deviation bypasses the town centre, which is located on the Orange to Broken Hill line. The purpose of the deviation is to provide a connection from the Parkes to Stockinbingal line to the Parkes to Narromine line with connections to the Orange to Broken Hill line. The new deviation would consist of approximately 5 km of Class 1 standard gauge track.

Figure 3-9 Junee to Stockinbingal

3.3.3 Parkes to Moree

Figure 3-10 below shows the possible deviations to replace sections of the reference case between Parkes and Moree. Figure 3-11 shows the area between Premer, Werris Creek and Emerald Hill which contains the longest deviations for this area.

Figure 3-10 Parkes to Moree reference case and deviations
Narromine bypass (C70)

The Narromine deviation is a greenfield section. The purpose of the deviation is to remove low speed curves and bypass the town of Narromine. The deviation would consist of approximately 12 km of Class 1 standard gauge track, compared with approximately 14 km along the reference case alignment. The deviation is also further from the Macquarie River floodplain. There appears to be potential to further improve the deviation by moving the proposed alignment to the south.

Dubbo bypass (C57)

The Dubbo deviation is a greenfield section. The purpose of the deviation is to remove low speed curves and bypass the town of Dubbo. The new deviation would consist of approximately 10 km of Class 1 standard gauge track.

Barbigal deviation (C03b1)

The purpose of the deviation is to remove low speed curves at Barbigal. The deviation would consist of approximately 2 km of Class 1 stc. dard gauge track on new alignment and approximately 4 km of Class 1 standard gauge (cpgraded) tract on the existing alignment.

Muronbung deviation (C03b2)

The purpose of the deviation is to remove low speed curves at Muron ung. The deviation would consist of approximately Ckm of Class 1 sundard gauge task on new alignment and approximately 4 km of Class 1 standard gauge upgraded) track on the existing alignment.

Boomley deviation 203b3

The purpose of the deviction is to remove low space curves at Boomley. The deviation would consist or approximate v 21 km ct Class v standard gauge track on new alignment and approximately 5 km of Cisss 1 stordard cauge track on the existing alignment. There is an opportunity c optimise the dentation buring Stage 3 of the study and retain a further 5.8 km of the existing a gnment (upgraced to Class 1).

G

Merrygoon: deviation (CO5b4)

Thi Melbournetr Melbournetr by the The purpose of the deviation is to remove low speed curves and bypass the town centre of Murrygeon. The deviation would consist of approximately 9 km of Class 1 standard gauge track. There San opportunity to optimise the deviation during Stage 3 of the study by n oving the alignment out of the floodplain of the Castlereagh River.

Toogarlan deviation (C03b5)

The purpose of the deviation is to remove low speed curves at Toogarlan. The deviation would consist of approximately 5 km of Class 1 standard gauge track on new alignment and approximately 1 km of Class 1 standard gauge (upgraded) track on the existing alignment.

Piambra deviation (C03b6)

The purpose of the deviation is to remove low speed curves at Piambra. The deviation would consist of approximately 2 km of Class 1 standard gauge track. The deviation is located on or close to the flood plain of the Castlereagh River.

Piambra to Ulinda deviation (C03b7)

This option is an enhancement of deviations C03b6 and C04b2. The purpose of the deviation is to remove low speed curves, bypass the town centre of Binnaway and remove the track reversal at Binnaway. The deviation would consist of approximately 11 km of Class 1 standard gauge track

Ulinda deviation (C04b2)

The purpose of the deviation is to remove low speed curves at Ulinda. The deviation would consist of approximately 3 km of Class 1 standard gauge track on new alignment and approximately 1 km of Class 1 standard gauge (upgraded) track on the existing alignment.

Oakey Creek to Premer deviation (C04b3)

The purpose of the deviation is to remove low speed curves. The new deviation would consist of approximately 17 km of Class 1 standard gauge track on new alignment and approximately 6 km of Class 1 standard gauge (upgraded) track on the existing alignment. There are opportunities to optimise the alignment in later stages of the study.

Premer bypass (C16b)

The purpose of the deviation is to remove low speed curves and bypass the town centre of Premer. The deviation would consist of approximately 4 km of Class 1 standard gauge track.

Premer to Emerald Hill (C62) – major greenield

The Premer (north) to Emerald Hill section is a greenfield section. The purpose of the option is to provide a direct route from Premer on the Binnaway to Werris Creek live to Emerald Hill on the Werris Creek to Mungindi line. This option by passes low speed curves and the towns of Werris Creek and Gunnedah. The section would condict of any eximately 75 km of Class 1 track. There are our ortunities to continue the alignment in later stages of the study.

Werris Creek high speed thangle (C59)

The purpose of the deviction is to provide a higher speed alignment for the Werris Creek bypass. The deviation would consist or approximately 1.2 km of Class 1 standard gauge track or new alignment approximately 1.3 km of Class 1 standard gauge (upgraded) track on the existing alighment and approximately 2.9 km of existing Class 1 track retained.

Spring Ridge to Breeza deviation (C59b) – major greenfield

This Melbourng Melbourng This option is an enhancement of deviation C59 to provide an increased journey time saving by providing a more duract route for the Werris Creek bypass. The deviation would consist of 25 km of Class 1 Standard gauge track, almost entirely across floodplain.

Narrapri kypass (C58)

The purpose of the deviation is to remove low speed curves and bypass the town centre of Natrabri. The deviation would consist of 10.5 km of Class 1 standard gauge.

Moree bypass (C17b1)

The purpose of the deviation is to remove low speed curves and bypass the town centre of Moree. The deviation would consist of approximately 9 km of Class 1 standard gauge track on new alignment. The alignment crosses two major power lines and about 2 km of zoned industrial land and is generally across floodplain. There are opportunities to optimise the alignment in later stages of the study.

Camurra deviation (C17b2)

The purpose of the deviation is to remove low speed curves at Camurra. The deviation would consist of 3 km of Class 1 standard gauge track on new alignment generally across floodplain.

Figure 3-11 Premer to Emerald Hill

3.3.4 Moree to Brisbane

Figure 3-12 below shows the possible deviations to replace sections of the reference case between Moree and Brisbane. Figure 3-13 shows the Toowoomba area from Cecilvale and Gatton which contains the most significant deviation options for this area.

Figure 3-12 more: to Brishand reference case and deviations

North Star to Xalarbon (205c) - major greenfield

The North Star to Yelerbon section is a greenfield section. The purpose of the option is to provide a more direct route from North Star to Yelerbon whilst trying to avoid a floodplain area to the west. This option bypasses the towns of Boggabilla and Kildonan and provides the misting link between NSW and Queensland. The new route section would consist of any Dximately 59 km of Class 1 standard gauge track.

Oakey bypass (D15c)

Melbour

The Yargullen to Oakey section is a greenfield section. The purpose of the option is to provide a more direct route from Yargullen and Oakey. This option bypasses low speed curves and the town of Oakey. The new section would consist of approximately 16 km of Class 1 standard gauge track.

Cecilvale to Gowrie via Wyreema West (D09b & D17c)

The Cecilvale to Wyreema West section is a new standard gauge section constructed adjacent to the existing narrow gauge Millmerran to Wyreema line, which will require some slight deviations outside of the QR corridor. The new route section would consist of approximately 33 km of Class 1 standard gauge track.

The Wyreema West to Gowrie section is a greenfield section. The new section would consist of approximately 20 km of Class 1 standard gauge track.

The purpose of the option is to remove low speed curves and gradients and to provide a direct route from Wyreema West to Gowrie. D09b also is required to combine with D36c1.

Cecilvale to Gatton south of Toowoomba (D09b & D36c1)

This is an alternative range crossing which traverses the range to the south of Toowoomba, and provides an alternative to the Wyreema West to Gatton option (D17c and D24C). It is 94 km in length of Class 1 standard gauge track.

It is a combination of greenfield construction and new track adjacent to the existing QR line between Cecilvale and Wyreema West.

By travelling to the south of Toowoomba this alignment would cross the range in a different e to ca, .so a higher I .mb. .on, this alignment attempts to I .e track between Gowrie and Lockyer .ombination @ greenfield and ew Class .g QR Rose wood to Toow on the line. location than the existing alignment and would therefore not be able to capture the existing western line traffic. Crossing to the south of Toowoomba is also a higher location to cross

An alternative to the major tunnelled D24c option, this alignment attempts to follow the existing curvy and steep QR narrow gauge track between Gowrie and Lockyer. It is approximately 57 km in length and a combination or greenfield and new Class 1 standard

Melbourne - Brisbane Inland Rail Alignment Study - Working Paper No. 10: Development of Route

Figure 3-13 Toowoomba area

3.4 **Upgrade** improvements

In addition to identifying the improvements required for the reference train and expected freight traffic to use the inland railway, other improvements to existing alignments (such as track structure upgrade and bridge replacements) are possible. The upgrade from Class 2 to Class 1 can be compared in the same way as the deviations discussed in section 5 of this report. The bridge replacements that would be included in that upgrade are identified in Appendix A. It should be noted that not all bridge upgrades have been included in the journey time assessment at this stage. A review will be carried out during Stage 3.

There are two areas where the possible upgrades are applicable: Parkes to Werris Creek

4. Journey times

4.1 Introduction

The alignment options being considered during Stage 2 of the study were modelled using RailSys computer software to provide an estimate of journey times. Models were developed for:

 the reference case (comprising generally existing track from Melbourne to North Star and new alignments from North Star to Acacia Ridge);

- upgraded track structure (along the existing alignments);
- deviations (comprising new alignments along greenfield routes).

In locations where the existing railway is derelict or does not exist, greenfield alignments were considered as part of the reference case.

The journey time estimates for the reference case, upgrades a opinion deviations are given in Table 4.1. Estimates for major deviations are given in Table 4.2. Minor deviations are new sections of track which potentially replace between one and three reference case sections. Major deviations replace a large number of reference case sections and also present alternatives to minor deviations.

The journey times in Tables 4.1 and 4.2 are for the reference train travelling in a northbound direction. Preliminary modeling of mains travelling in the southbound direction was also undertaken in Stage 2. Only the northbound journey times have been listed in this section as the total of ferences between no tabound and southbound are considered (with one exception) to the minimal. The most significant differences are listed in Appendix B of this report.

Refere case sectio	ence Section name effort	Length (km)	Journey Time Estimate - Reference case (mins)	Journey Time Estimate - Upgraded Track (mins)	Deviation Section	Length (km)	Deviation Journey time Estimate (mins)
A01	Melbourne to Mangalore	117	88	N/A	N/A		
A02	Mangalore to Wodonga (south)	188	106	N/A	N/A		
A03a	Wodonga deviation	5	4	N/A	N/A		
A04	Wodonga (north) to Junee	163	106	N/A	N/A		
B01	Junee to Junee (east)	4	3.5	N/A	N/A		
B02a1	Junee (east) to Illabo	15	8.25	N/A	N/A		
B02a2	Illabo to Bethungra (south)	11	8	N/A	N/A		
B03	Bethungra (south) to Bethungra (north)	8	9.25	N/A	B03a	8	9
B04	Bethungra (north) to Frampton (south)	4	2.5	N/A	N/A		

l able 4-1 Johnney	The estimates to	r reterence case	undrades and	deviations
Tuble Title anoy		, i oi oi oi i oo oaco,	apgraaoo ana	aorialionio

	Reference case section	Section name	Length (km)	Journey Time Estimate - Reference case (mins)	Journey Time Estimate - Upgraded Track (mins)	Deviation Section	Length (km)	Deviation Journey time Estimate (mins)
L	B05	Frampton (south) to Frampton (north)	8	6.5	N/A	B05a	5	6
-	B07	Frampton (north) to Cootamundra (south)	6	4	N/A	B07a	5	3
-	B08	Cootamundra (south) to Bauloora	9	12.5	N/A	N/A		
-	B10	Bauloora to Yeo Yeo (south)	10	8	N/A	N/A		
-	B11	Yeo Yeo (south) to Yeo Yeo (north)	4	2.75	N/A	B11a	3	1.5
-	B12	Yeo Yeo (north) to Stockinbingal	8	6.75	N/A	N/A		
-	B15	Stockinbingal to Stockinbingal (north)	1	duce	N/A S	N/A		
-	B16	Stockinbingal (north) to Maleeja	8	5.5	/A	Na		
-	B18	Maleeja to Parkes (south)	9ر. ا	06.75	No re	N/A		
-	B19	Parkes (south) to Parkes (non.')	6	725 60	N/A	B19a	5	4.5
-	B20a1	Parkes (north) to Nar onine (south)	100	84	C: .75	N/A		
-	B20a2	Narromine (South) to Narromine	6	5.5	5	C70	12	6.5
-	C01a1	Narron ine to Nanomine (past)	5	10.25	10	010	12	0.0
_	C01a2.6	Narromin (east) ODubbo (west)	3	20.25	16.5	N/A		
-	C02	Dubbe (າາຈະເ) to E ແນbo (າon.) eact)	12	13	12.5	C57	10	5.5
-	C03a1	ເວັບປະຊຸດ (ro theast) to Barbigal (west)	15	12	9.5	N/A		
	o).5a2	³ arbigal west) to Barbigal (eas:)	6	5	4.5	C03b1	6	3.25
e	C03a3	Barbigal (east) to Muronbung (south)	12	10.75	9.75	N/A		
×	C ⁻ 13a4	Muronbung (south) to Muronbung (north)	9	8	7.75	C03b2	8	5
	C03a5	Muronbung (north) to Boomley (south)	12	9.5	8.25	N/A		
-	C03a6	Boomley (south) to Boomley (north)	27	26.25	25	C03b3	26	19.5
-	C03a7	Boomley (north) to Merrygoen (south)	5	3.75	3.75	N/A		
-	C03a8	Merrygoen (south) to Merrygoen (north)	13	13	12.5	C03b4	9	5
-	C03a9	Merrygoen (north) to Toogarlan (south)	4	3.25	3	N/A		
-	C03a10	Toogarlan (south) to Toogarlan (north)	7	6.5	6	C03b5	6	4

	Reference case section	Section name	Length (km)	Journey Time Estimate - Reference case (mins)	Journey Time Estimate - Upgraded Track (mins)	Deviation Section	Length (km)	Deviation Journey time Estimate (mins)
1	C03a11	Toogarlan (north) to Piambra (south)	13	10	8.25	N/A		
-	C03a12	Piambra (south) to Piambra (north)	2	1.5	1.25	C03b6	2	1
-	C03a13	Piambra (north) to Binnaway	4	3.5	3.5	N/A		
-	C04b1	Binnaway to Binnaway (east)	4	3.25	3.25	N/A		
-	C04a4	Binnaway (east) to Ulinda deviation (north)	4	3.75	3.75	N/A		
-	C04a5	Ulinda (north) to Ulinda (south)	5	3.75	3.5	C0.1b2	4	2.75
-	C04a6	Ulinda (south) to Oakey Creek	27	22	19.25	N/A		
-	C04a7	Oakey Creek to Premer (west)	27	21.5	23.75	C04b3	23	15.75
-	C04a8	Premer (west) to Premer (central)	2	2.25	en	ndice		
	C04a9	Premer (central) to Premer (north)		0.5	d. E ppe	C16b	4	2.5
	C04a10	Premer (north) to Prems. (east)	2	2	2.75	-		
	C05a1	Premer (east) to Coling Ridge	37	≫3.25	21.25	N/A		
	C05a2	Spring Ridge t. Turila v.) (high speed w(s ¹)	27	21.05	17	N/A		
-	C06a1	Turil: w a (high hused w(s)) to Turi awa (lour speed south)	3,10	2	1.5			
	C60	Turilavia (low should south to Turilawa (low speed noi th)	1	0.75	0.75	C59	5	4
-	C0L32	Turilawa (เช่น speral horth) เป Turilawa (high speed north)	2	1.75	N/A	-		
	C07a1	Tu inawa (h.g.) speeri north) to Breeze	19	10.75	N/A	N/A		
-	C07a2	Bredza to En clald Hill	63	38	N/A	N/A		
-	C(8	≟mer⊾ld Hill to Baan Baa	29	18	N/A	N/A		
_Ne	C09	E າວກ Baa to Narrabri (south)	29	16.5	N/A	N/A		
	C10	Narrabri (south) to Narrabri (north)	15	18.5	18.5	C58	11	5.75
-	C11	Narrabri (north) to Moree (south)	85	88.5	52	N/A		
	C17a1	Moree (south) to Moree (east)	4	3.75	2.25	N/A		
-	C17a2	Moree (east) to Moree (north- east)	9	9.25	7	C17b1	9	4.75
-	C17a3	Moree (north-east) to Camurra (south)	6	4.25	N/A	N/A		
-	C17a4	Camurra (south) to Moree (north)	5	5.5	N/A	C17b2	3	1.75
	D01a	Moree (north) to North Star	78	48.75	N/A	N/A		
-	D02a	North Star to Boggabilla	26	15	N/A			
-	D03c	Boggabilla to Kildonan	13	7	N/A	D05C	59	33.25
-	D04a	Kildonan to Yelarbon	34	21	N/A			
-	D06a	Yelarbon to Inglewood	34	24	N/A	N/A		

	Reference case section	Section name	Length (km)	Journey Time Estimate - Reference case (mins)	Journey Time Estimate - Upgraded Track (mins)	Deviation Section	Length (km)	Deviation Journey time Estimate (mins)
	D07c	Inglewood to Millmerran	74	47	N/A	N/A		
	D08a	Millmerran to Cecilvale	23	20	N/A	N/A		
	D14c	Cecilvale to Yargullen	31	19	N/A	N/A		
	D15a	Yargullen to Oakey	18	12	N/A	D15C	16	9.25
	D16a	Oakey to Gowrie	12	14	N/A	N/A		
	D24c	Gowrie to Gatton	41	25	N/A	D24c2	57	38.75
	D25c	Gatton to Grandchester / Rosewood	29	14	N/A	N/A		
	D26c	Grandchester / Rosewood to	56	35	N/A	٨ ^٧ ٨		
	D28a	Kagaru to Acacia Ridge	34	18	N/A	N/A	•	
Me	This bourn ov the	working Paper wi working Paper se in the Inland Brisbane has e-Brisbane has content of the Its report	as th Rail eend stud	Aligne Superse	dec. appe			

Deviation name	ne Reference case Sections		Journey Time Estimate Reference case (mins)	Journey Time Estimate Upgraded Track (mins)	Deviati on Section	Length (km)	Deviation Journey Time Estimate(mins)	
Junee to Stockinbingal	B01+ B02a1+ B02a2+ B03+ B04+ B05+ B07+ B08+ B10+ B11+ B12	86	72	72	B01c & B14	51	32.75	
Illabo to Stockinbingal	B02a2+ B03+ B04+ B05+ B07+ B08+ B10+ B11+ B12	68	60.25	60.25	B14a	39	26.75	
Cootamundra bypass	B07+ B08	15	11.5	11.5	e)09	10	5.5	
Stockinbingal bypass	B11+ B12+ B15+ B16	21	03	16	B17	13	7	
Piambra to Ulinda deviation	C03a13+ C04b1+ C04a4+ C04a5	16	14.25	14	S03b7	11	8.5	
Premer to Emerald Hill	C04a10+ C05a1+ C05a2 + C06a + C60+ C06a2+ CC7+ C07a2+	1.4 Rai	104.5 Se	92 7 P	C62	75	42.25	
Spring Ridge to Breeza deviation	CC5a .+ CCoa1+ C6C+ Cu6a2∻ C07a1	50	4275	35.25	C59b	23	12.5	
Cecilvale to Gov r e via Wyreema West	D1.1C+D15A. D16A	61	45	45	D09B & D17C	53	39.25	
Cecily oro to Gatton south of Toowoomba	Din1C+ D154+ D164+ 7:24C	101.9	70	70	D09B & D36c1	94		
4.2 ¹¹ Operational modelling assumptions								
wourney time estimates were made using the Railsys computer simulation package (the model). This model uses data for locomotives, wagons, gradients, speed restrictions and								
timeta	bling principles to simula	ate train o	perations with	n a high level o	of sophistic	cation.		

Table 4-2 Journey time estimates for deviations bypassing multiple reference case sections

For this study, the reference train data was input using published power and resistance data for three 3,200kW AC drive diesel locomotives and a typical 40% double stacked container train, with a total length of 1,800 m. This combination was chosen using the TOC Manual power to weight requirements for a superfreighter train required over the hilly Sydney to Junee route, and resulted in the reference train achieving the same or slightly better performance than allowed for in the existing timetable for a superfreighter train on the Coastal Route, which was considered to be realistic.

The model was set to run the train 5% slower than the fastest possible performance for each section, to allow comparison with typical timetable times. An allowance of 5% is typically made for the variations in running times caused by such things as minor temporary speed restrictions and variations in driving styles, rollingstock maintenance standards, and weather conditions.

No allowance for crossing moves was made in the model in Stage 2.

Gradient and speed restriction data was obtained from various ARTC sources.

Where line speed was modelled above present maximum speeds, the curve diagrams and TOC Manual were used to identify curves and an estimate was made of the maximum achievable speed (using Table 4-3). It was assumed it would be possible to construct adequate cant transitions on the existing formation, and that a maximum cant deficiency of 80 mm is permitted.

	Maximum Speed Band of Curves in 100 m Increments							
	Speed – 70km/h							
	Radius (m)	Cant, E (mm)	Deficiency, D (mm)	Total E+D (mm)				
	300	118	ite stur	193				
	Speed – 80km/h	di	n ^t					
	Radius (m)	Cant 🗧 (mm)	Deficiency, D (mm)	າວtal E+D (mm)				
	400	1-3 0	Zan jed er	189				
	Speed – 90 km/h	S.C.A.	see apr					
	Radius (m)	Cant. E (ກm)	∂eficiεာω, D (mm)	Total E+D (mm)				
	500	110 601	75	191				
	Speed – 103 rm/h	01 3						
	Radius (m)	Cant, E ເນາເ.)	Deficiency, D (mm)	Total E+D (mm)				
	600	120	77	197				
nis	Speed – 1 /J km/h	8						
	Radicis (m)	Cant, E (mm)	Deficiency, D (mm)	Total E+D (mm)				
0	100	125	80	204				
rne	Speed – 115\/h							
bour	kadius (m)	Cant, E (mm)	Deficiency, D (mm)	Total E+D (mm)				
nell ci	200	119	76	195				
N	Speed – 125km/h							
the	Radius (m)	Cant, E (mm)	Deficiency, D (mm)	Total E+D (mm)				
ra,	900	125	80	205				
·	Speed – 130km/h							
	Radius (m)	Cant, E (mm)	Deficiency, D (mm)	Total E+D (mm)				
	900	125	80	205				

Table 4-3 Maximum Speeds at Curves

In general, using data from the above table resulted in only small or no increases in speed at most curves when compared with existing restrictions.

During Stage 2 of the study, as lines were developed, they were modelled in isolation from each other. The accuracy of the modelling will be further improved in Stage 3 of the study when the models will be joined to create a single model for the inland rail alignment.

4.2.1 **Reference case assumptions**

For the reference case journey times, assumptions were made in building the model of the infrastructure. Existing speed restrictions, detailed in the ARTC TOC Manual for an existing train with characteristics similar to the reference train, were retained with the following six exceptions.

Melbourne to Cootamundra

As suggested by ARTC's 2008 – 2024 Interstate and Hunter Valley Rail Infrastructure Strategy (2024 Strategy), it was assumed that the line will be capable of conveying the reference train at 115 km/h. It was assumed that the Bethungra Spiral will be modified by ARTC to enable double stacking. Changes to the alignment at Bethungra were modelled.

Cootamundra to Parkes

In line with the 2024 Strategy it was assumed that the upgrade of the line to Class 1 standards will result in a railway capable of conveying the reference train at 115 km/h.

The Lachlan River bridge near Forbes is a through-truss girder bridge with a speed restriction. It was assumed that ARTC will have replaced it with a bridge careble of carrying double stack container trains at 115 km/n. The adjacen, 20 km/h level c ossing speed restriction was retained as it was a cured that sig! ting distances were not adequate to remove the speed restriction.

Parkes to Turilawa

These Class 2 lines were assumed to be uppeded to convey the reference train by replacement of selecten budges (aetailed in Table 3.3), which could then be used by the reference to a to using l_{12} spee x. Spectrestrictions at curves were eased in line with the table above. All other speed restrictions were retained.

0

Using the ARTC TOC Manual for guidance, the reference train was assumed to be able to travel at a maximum speed cr 80 km/h over this line.

The Macquarie River Lridge at Dubbo is a through-truss girder bridge with a speed reminition have been replaced by a bridge capable of carrying double Melbourr by the fi Stack containers. The adjacent lines through Dubbo were assumed to have been retained they 30 keyla speed restriction.

It was assumed that short bypasses are constructed at Binnaway and Werris Creek, enabling trains to travel on the inland rail route without the need to reverse.

Turilawa to Narrabri

In accordance with the 2024 Strategy, it was assumed that upgrading of this Class 1 line to allow the reference train to travel at 115 km/h would have taken place by the time Inland Rail is operating.

Narrabri to Moree

Using the ARTC TOC Manual for guidance, it was assumed that this Class 2 line will be able to convey the reference train at 80 km/h. It was assumed that the Namoi River Bridge at Narrabri, which currently has a speed restriction over it, is replaced by a bridge capable of carrying the reference train.

Moree to Boggabilla

It was assumed that these Class 3 and derelict lines would be upgraded and renewed to Class 1 standards, capable of carrying the reference train at 115 km/h, if the inland railway was constructed along the alignment. Speed restrictions around curves were estimated.

4.2.2 **Upgrade case assumptions**

Additions to the reference case model were made for the upgrade case journey times. The ARTC curve and gradient book was studied to identify curves and speeds allocated in Table 4-3 above. This resulted in some curves, which are unrestricted where the current maximum speed is 80km/h or 100 km/h, having speed restrictions below the new maximum of 115 km/h.

In this review eight speed restrictions were found which did not appear to be applied solely due to curves (see Table 4.4 below). Where there were curves within the existing restriction, these were used to assume a speed increase. Otherwise, these restrictions were retained. Further investigation is required to confirm the potential maximum speed and length of these restrictions.

All other areas had the speed increased from the current maximum for the reference train of 60km/h, 80km/h or 100 km/h, to 115 km/h. This assumption therefore implies that all structures are either capable of carrying the reference train at 115 In /h now, or are upgraded to allow this. lices.

	Approximate location	Section	Chanage e igni		Existing Speed (km/h)	Assumed Upgrade Speed
	Between Dubbo and Narromine	CC1a2	471.500 to 471.200	680	80	95
	Boomley	34 503	ડવે:∔.430 *૮ ખે29.590	5,160	70, 65, 70	80, 70, 80
_	Piambra	CU3212	449.440 to 449.610	170	80	80
_	Premer	L`L4a7	524.385 to 525.881	1,469	80	90
_	Caroona	003	581.402 to 583.196	1,794	80	85
_	Emera'u Hill	C07	493.025 to 494.638	1,613	80	80
e	Larrabri South Juretion	C10	564.600 to 564.680	80	80	80
_	Narrabri	C10	568.713 to 568.860	147	50	50

Table 4-4 Non Curve Related Speed Rescrictions

Parkes to Turilawa

These Class 2 lines were assumed to be upgraded to convey the reference train by replacement of the same selected bridges upgraded in the reference case, which could then be used by the reference train at 115 km/h. Speed restrictions around curves were estimated.

Narrabri to Moree

It was assumed that this Class 2 line would be upgraded to Class 1 standards, capable of carrying the reference train at 115 km/h, if the inland railway was constructed along the alignment.

4.3 Summary

The modelling during Stage 2 has estimated the total journey time between Melbourne and Brisbane for the reference train to travel along the reference case alignment to be:

23 hours, 2 minutes; to which would be added time for crossing trains and other operational requirements, totalling between 4 and 6 hours

This reference case assumes essential infrastructure is constructed to remove the need for reversals at Binnaway and Werris Creek, to upgrade bridges which currently impose significant speed restrictions on the existing railway, and to provide new alignments in Queensland via Boggabilla, Kildonan, Yelarbon, Inglewood, Millmerran, Cecilvale, Yargullen, Oakey, Gowrie, Gatton, Grandchester/Rosewood and Kagaru.

Modelling has also estimated the journey times for the reference case alignment with the track upgraded at various locations to Class 1 standard:

21 hours, 31 minutes; to which would be added time for crossing pains and other . operational requirements, totalling between 4 and 6 hours

It is important to note that the modeling work undertaken in Stage 2 is an incrovement in accuracy from Stage 1 and further study of train movements and time abies is required in Stage 3 to improve the confidence of the total journ ey times, especially the additional time for crossing delays and other operational requirements.

To put the assessment of options into perspective, the estimated total journey time savings for the quickest alignment using the sections presented in this working paper is:

1 hour 11 min use saving by upgrading the existing alignments to a Class 1 standard C03a9, C03a1, C04a6), Narroth and Moree (C11, C17a1 andC17a3); C1.ours. (5 minutes saving from the deviation on Sections betweer Parkes and Premer (B20a1, C01a2, C03a1, C03a3, C03a5,

Shours. IS minutes saving from the deviations along the route (B01c, B14, B19a, C70, C57 C03b1 C03b2 C03b3, C03b4, C03b5, C03b6, C03b7, C04b3, C62, C58, C17b1, C17b2 [105C, D69B and D17C);

The mcdelling has therefore estimated the total journey time between Melbourne and Melbourne Invithe fin Brichane for this fastest Stage 2 option¹ to be:

18 hours, 36 minutes in the northbound direction; to which would be added time for Crossing trains and other operational requirements, totalling between 4 and 6 hours.

¹ Stage 1 considered faster options that were not progressed to Stage 2 due to high capital cost; refer to Working Paper No.5 for the detailed analysis.

Evaluation of options 5.

5.1 Introduction

The purpose of this section is to evaluate the options for journey time improvements presented in section 3. The criteria used for the analysis are environmental factors, capital cost and journey time saving. Other factors such as additional benefits to other railway corridors was considered but not analysed in detail.

This analysis will be used to determine the route to be taken forward for further examination in Stage 3 of this study based upon a journey time requirement of 27 hours. Further economic and financial analysis will be undertaken in Working Paper No. 12 (Stage 2 Economic and Financial Analysis) and in Stage 3 of this study to determine the final alignment and operating delays for the railway. it Study'

5.2

Environment and land use duced In Stage 2 of the study preliminary anvironmental ascessment was chaucted for the route options. This assessment in pre-ented to Working Paper No. 7. A preliminary land assessment was also conducted and is presented in working Taper No. 8. A summary of the results from these working pers is contained in Appendix D.

The assessments 'cound that, while it some of the reviations are considered preferable to the reference cose, predominantly town by assect, there are no constraints on the reference case that could not be addressed shrough further route refinement, mitigation, or mar agement ouring construction. Therefore no deviations were progressed for further Analysis on environments, grounds alone.

Most of the ceviations involved construction of a new railway through greenfield areas, with potential impacts on identified environmental and land use constraints. For several deviations sumificant constraints were identified. These would result in difficulties in Melbourn's Sobtaining planning approval, particularly considering there are better alternatives available, panely, the eference case. It was therefore decided that the following deviations should be excluded from the analysis due to environmental constraints:

Kan Frampton to Cootamundra South deviation (B07a) - the deviation would cause loss and fragmentation of endangered ecological species and threatened species;

- Muronbong deviation (C03b2) the deviation would cause endangered ecological species to be fragmented;
- Boomley deviation (C03b3) the deviation is adjacent to the Goonoo Stage forest and would impact upon endangered ecological communities and threatened species;
- Cecilvale to Gowrie via Wyreema West (D09b & D17c) this section passes through • populated areas to the west of Toowoomba;
- Cecilvale to Gatton south of Toowoomba (D09C & D36c1) this section would affect populated areas east of Toowoomba; would involve extensive vegetation clearing through important ecological areas; and would involve construction in steep, vegetated and inaccessible terrain;
- Gowrie to Gatton low speed (D24c2) this section would affect populated areas; would • involve extensive vegetation clearing, including through the White Mountain Forest

Reserve; and could affect identified heritage items. It would also require construction in steep, vegetated and inaccessible terrain.

5.3 Capital works costings

Capital works cost estimates were prepared for each reference case, upgrade and deviation option. The details of these estimates can be found in Working Paper No. 11 (Stage 2 Capital Works Costings). Costs were estimated using the following:

- reference case definition in section 3.2,
- upgrade criteria in section 3.4.
- greenfield track using preliminary designs and Working Paper No.6 Design Standards. The costs have been used in the analysis below and are contained in Appendix C.

5.4 Journey time

A total journey time requirement of 27 hours have been specified to inland Rail. This journey time comprises running time and delays for clossing and refueling. During Stage 2 of this study, it has been assumed that the delays will be 6 hours, further modaling and timetable planning in Stage 3 will consider this delay and detaining the cost of activeness of adding additional loops to reduce journey time in place of building devictions.

When selecting the deviations and upgraded for fullmer annusis in Stage 3, an extra 45 minute contingend was included to allow for the estimating inaccuracy.

Hence, reducing the total journe, time of 27 hours by the six hours and 45 minutes gives an in-motion tracel time requirement of 20 nours and 15 minutes. The reference case travel time in section 1.3 is 20 hours and 2 minutes, therefore a short-list of options saving 2 hours and 17 minutes of travel time was selected to investigate further in Stage 3.

Analysis

Copiral cost and journey time are used in the analysis to differentiate the options. Incremental cost is used in the analysis, that is, the capital cost of the deviation (or upgrade) minus the cost of the reference case alternative.

Melbouri by the f The following table ranks the deviations and upgrades in order of incremental cost for each minute of journey time saved. The options with the lowest capital cost per minute saved were considered the most economic options. Sections that are highlighted green have been excluded for the environmental reasons described above. The negative incremental cost for D05C and D15C indicate that the capital cost of the deviation is estimated to be less than the cost of the reference case. As there is no existing route in this area the reference case was assumed to be the route within the existing corridor wherever possible.

> The table below contains only the more economic options, the complete table is contained in Appendix C along with the complete analysis of journey times, lengths and capital costs.

² Refer to Working Paper No. 2, Review of Route Options, for the derivation of this figure.

	Journey time improvement	Section Name	Reference case alternative	Journey time saving (minutes)	Cost (\$), (deviation/ upgrade - reference case)	Cost per minute saved
	D15C	Oakey bypass	D15A	2.75	-\$89,840,400	-\$32,669,236
	D05C	North Star to Yelarbon	D02+ D03+ D04	9.75	-\$18,322,100	-\$1,879,190
	C58	Narrabri bypass	C10	12.75	\$26,862,400	\$2,106,855
	C70	Narromine bypass	B20a2+ C01a1	9.25	\$24,006,700	\$2,595,319
	Upgrade	Narrabri (north) to Moree (south)	C11	36.5	\$112,048,900	\$3,069,833
	B17	Stockinbingal bypass	B11+ B12+ B15+ B16	9	\$31,296,800	\$3,477,422
	Upgrade	Moree (south) to Moree (east)	C17a1	1.5	\$5,563,400	\$3,708,933
	C59b	Spring Ridge to Breeza	C05a2+ C06a1+ C60+ C06a2+ C07a1	24.5	\$92,200,200	\$3,763,273
	B01c & B14	Junee to Stockinbingal	B01+ B02a1+ B02a2+ B03+ B04+ B05+ B07+ B08+ B10+ B11+ B12	39.25	\$150,421,800	\$3,832,403
	C03b7	Piambra to Ulinda deviation	C03a13+ C04b1+ C04a4+ C04a5	5.75	\$22,405,300	\$3,896,574
	B14a	Illabo to Stockinbingal	B02a2+ B(& + B04+ B05+ B07+ SUE+ B10+ B11+ B12	J3.5	\$137,585,100	\$4,169,704
	C03b4	Merrygoen deviation	C)3a8	e e	\$34,346,500	\$4,293,313
	C57	Dubbo bypass	C02	7.5	\$32,226,400	\$4,296,853
	C17b2	Camurra deviation	517a4	375	\$19,380,500	\$5,168,133
	C62	Premer to Emerald	C04a.0+ C05a.+ C05r2 - C05a1+ CC6a.+ C07a1+ C07a2	62.25	\$374,276,800	\$6,012,479
	B19a	Parkes h, pass	B19	2.75	\$18,467,100	\$6,715,309
	D09B & D17C	Cocilvale to Cowrie vie Vigreema wiest	<u> 5 : 4C+ 51 5C3+ D16A</u>	3	\$21,737,300	\$7,245,767
	Upgrade	Dubbo (north cost) to Ba.b.gal (wos)	CU331	2.5	\$18,988,000	\$7,595,200
	Uporans	Parkes (north) to Narromine (source)	B20a1	19.25	\$149,794,300	\$7,781,522
	C04b3	Cakey Cr. e.: to Prenier Seviation	C04a7	8.75	\$77,318,400	\$8,836,389
	C03b3	Boonday deviation	C03a6	6.75	\$60,037,900	\$8,894,504
	Upgrade	Cremer (v.cst) to Premer (cent.a.)	C04a8	0.25	\$2,455,900	\$9,823,600
Mell	56 ^{the} F	Naromine (east) to Dubbo (west)	C01a2	3.75	\$38,533,200	\$10,275,520
v v			-			

Table 5-1 Cost per minute saved

Explanation of results

The options highlighted yellow above give a journey time reduction of 2 hours and 57.5 minutes, which reduce the total journey time to the specified 27 hours.

The short-listed options were found to be cost effective for the following reasons.

5.6.1 **Reduction in distance**

Deviations that are considerably shorter than the reference case significantly reduce the journey time. Deviations that achieve this are:

Illabo to Stockinbingal (B14a); •

³ For the purposes of this comparative analysis, D15A has been replaced in the reference case by D15C as D15C was found to be less expensive and quicker than D15A and thus gives a more accurate comparison.

- Parkes bypass (B19a);
- Merrygoen deviation (C03b4);
- Narromine bypass (C70);
- Spring Ridge to Breeza (C59b); and
- Camurra deviation (C17b2).

5.6.2 Avoiding reference case costs

By avoiding a high cost on the reference case a deviation has an improved incremental cost. Deviations which avoid a high cost on the reference case alignment are:

- Dubbo bypass (C57) as the reference case assumes significant cost to replace the Macquarie River Bridge;
- Piambra to Ulinda deviation (C03b7) as the reference case includes new track to eliminate the reversal at Binnaway (C04b1). This option also reduces the length of the reference alignment by about 5 km;
- Narrabri bypass (C58) as the reference case (C10) assumes the Nanci River Bridge and the Narrabri Bridge will be upgraded;
- North Star to Yelarbon (DOCC) as the reference case requires rebuilding of the derelict North Star to Goggal in (D02a) section, a new section with a large bridge crossing the border (D05.) and a new standard gauge section within the existing narrow gauge corridor between Kildonan and Calarbon (D04a);
- Oakey Lypass (115C) which is chooper than the reference case (D15A).

Ingrades

Upyrading from Claus 2 to Class a will increase the line speed for the reference train and therefore reduce the journey time.

Options where the upgrade was found to be cost effective are:

between Parkes (north) and Narromine (south) (B20a1) - where the existing track is straight and flat so the reference train can realize the benefits of the increased line spend;

between Narrabri (north) and Moree (south) (C11) and Moree (south) to Moree (east) (C17a1) - where the existing is relatively straight and flat and the reference train has a current speed restriction of 60 km/h.

5.6.4 **Options not selected**

Junee to Stockinbingal versus Illabo to Stockinbingal (B01c + B14 vs B14a)

Thi Melbournets Melbourntts by the f These two greenfield alignments achieve the same purpose; providing a more direct route, bypassing the tight curves and steep grades in the Bethungra area. The journey time and capital expenditure estimates for the two alignments are proportional. Environment and land factors were used to differentiate between the two options, Illabo to Stockinbingal (B14a) aligns more closely with the property boundaries and uses more of the existing corridor, it is considered to provide fewer land impacts and lower acquisition costs. Therefore Illabo to Stockinbingal was chosen in preference to Junee to Stockinbingal (B01c + B14).

Parallel options

Some options were cost effective when considered in isolation, but are located in parallel to other more favourable options. Therefore Junee to Stockinbingal (B01C+B14), Stockinbingal bypass (B17) and Premer to Emerald Hill (C62) will not be considered in Stage 3.

High construction costs

The analysis showed many of the options to be less favourable due to significant capital expenditure being required for tunnels, deep cuttings, large embankments (in hilly terrain) and significant structures.

Upgrades and curve easing

L winding betwe . une speed of the ref. .a.nt reduction in journey tin .a.n. A number of deviations we .urves. However due to the final mail .o construction costs they di not prove to the .o construction costs the .o c On sections where the existing track is undulating and winding between Narromine and Werris Creek upgrading the track to increase the line speed of the reference train from 80 km/h to 115 km/h does not give a significant reduction in journey time as the curves and grades still constrain the speed of the train. A number of deviation were considered in Stage 2 to eliminate the low speed curves. However due to the minimal journey time improvement and relatively high construction costs they did not prove to be cost effective

It has been assumed at this stage that all bridges will be replaced as part of the track upgrades. Once bridge capacity information is provided we will review this assumption during Stage 3 and some existing bridges may be adequate and can remain.

The sections that could be upgraded from Class 2 to Class 1 are listed in Table A-1. The bridges on those sections that may require upgrading are included in Table A-2. The bridges on the existing Class 3 track which are likely to require upgrading are contained in Table A-3.

	Section	Description
	B20a1	Parkes (north) to Narromine (south)
	B20a2	Narromine (south) to Narromine
	C01a1	Narromine to Narromine (east)
	C01a2	Narromine (east) to Dubbo (west)
	C02	Dubbo (west) to Dubbo (north easi)
	C03a1	Dubbo (north east) to Barbina. (west)
	C03a2	Barbigal (west) to Barbiga. (east)
	C03a3	Barbigal (east) to Muronb. ng (south)
	C03a4	Muronbuno (Louth) t Murchbur.g (nort'i)
	C03a5	Muromung (ກະຕິກ) to ໂລເວລາໄອງ (ຄະນຸກ)
	C03a6	Roc.nley 'south) to boomley (forth)
	C03a7	Bounder (north) to Mothygoen (South)
	ં\`ડa8	Merrvgo ກ (south) io M ກາງງອດຄ (north)
:5	C03a7	N.ຈະrygoch (North) tວ Toogarlan (south)
This	C03a10	Toc (crian (south) to Toogarlan (north)
•	્રે કેગ્ર11	ະວogarlaາ (north) to Piambra (south)
	CO3rti2	P ⁱ anbra (south) to Piambra (north)
Juri	CC3a13	Piambra (north) to Binnaway
100	CC.1&4	Binnaway (east) to Ulinda (north)
Mer	C04a5	Ulinda (north) to Ulinda (south)
, he	C04a6	Ulinda (south) to Oakey Creek
NY L.	C04a7	Oakey Creek to Premer (west)
	C04a8	Premer (west) to Premer (central)
	C04a9	Premer (central) to Premer (north)
	C04a10	Premer (north) to Premer (east)
	C05a1	Premer (east) to Spring Ridge
	C05a2	Spring Ridge to Turilawa (high speed west)
	C06a1	Turilawa (high speed west) to Turilawa (low speed south)
	C11	Narrabri (north) to Moree (south)
	C17a1	Moree (south) to Moree (east)

Table A-1 Possible sections for Upgrade from Class 2 to Class 1

	Section	Location	Structures Upgrade Summary	Proposed Bridge Type (refer to WP No. 11)
	B20a1	453.403	Goobang Jct Underbridge	Type 6 Culvert
	B20a1	454.844	Goobang Jct Underbridge	Туре 3
	B20a1	455.228	Goobang Jct Underbridge	Туре 3
	B20a1	460.698	Goonumbla Underbridge	Type 6 Culvert
	B20a1	461.157	Goonumbla Underbridge	Туре 3
	B20a1	468.176	Goonumbla Underbridge	Type 6 Culvert
	B20a1	468.565	Goonumbla Underbridge	Туре 3
	B20a1	478.262	Mickibri Underbridge	Туре 3
	B20a1	484.829	Mickibri Underbridge	Type ? Culvert
	B20a1	498.870	Peak Hill Underbrids	Type 6 Culvert
	B20a1	503.599	Peak Hill Underbudge	Туре 3
	B20a1	505.502	Peak Hill: Incerbridge	Суре 3
	B20a1	507.025	Peak Hill Underbridge	Type Culvert
	B20a1	509.640	Peak Hill Under rige	Type 6 Culvert
	B20a1	513.60	Toningle, West Uniterbridge	Type 6 Culvert
	B20a1	£15.011	Toningley Wost Undebudge	Туре 3
	B20n1	515.601	າ oming cy West 'ນ. derbridge	Type 6 Culvert
-	E∿20a1	519.224	Tomingley Vest Underbridge	Туре 3
15	B20a '		Wvar og Underbridge	Type 6 Culvert
14.	B2021	528.308	Wyanga Underbridge	Type 6 Culvert
	[<]	529.274	Wyanga Underbridge	Type 6 Culvert
-ne	B20a1	519.768	Wyanga Underbridge	Туре 3
our	32Ja1	546.542	Narwonah Underbridge	Туре 3
albe	B20a1	547.559	Narwonah Underbridge	Type 6 Culvert
Me	B20a1	547.739	Narwonah Underbridge	Type 6 Culvert
the	B20a1	547.841	Narwonah Underbridge	Type 6 Culvert
ra	B20a1	548.064	Narwonah Underbridge	Type 6 Culvert
~	B20a2	552.631	Narromine Cowl Underbridge	Туре 3
	B20a2	556.478	Narromine Silo Rd Underbridge	Type 6 Culvert
	C01a1 C01a1	469.936	Minore Underbridge Whylandra Ck (No.2) & Delroy St(No.2 Spa	Type 6 Culvert
	C01a2	411.411	Silivo.S Spa	
	C01a2	403.110		
	C01a2	400.270	Macquaria Diver & Vieducto	
	C01a2	402.300	Sandy Crook	
	C03a1	400.319	Januy Creek	
	C03a1	403.400		
		4/1.040	noy jet underbindge	iype o

Table A-2 Possible Bridge Upgrade works – Existing Class 2 track

Melbourne - Brisbane Inland Rail Alignment Study - Working Paper No. 10: Development of Route

	Section	Location	Structures Upgrade Summary	Proposed Bridge Type (refer to WP No. 11)
	C03a1	480.507	Beni Beni Creek Underbridge	Туре 3
	C03a2	485.336	Beni Plain Creek Underbridge	Туре 3
	C03a3	491.216	Ballimore Mitchell Creek Underbridge	Туре 3
	C03a3	493.198	Ballimore Underbridge	Туре 3
	C03a3	496.813	Ballimore Creek Underbridge	Туре 3
	C03a3	502.374	Muronbung Underbridge	Type 6 Culvert
	C03a4	504.174	Spicers Creek Underbridge	Туре 3
	C03a4	509.099	Baragonumble Creek Underbridge	Туре 3
	C03a5	515.710	Elong Elong Underbridge	Туре 3
	C03a5	517.974	Talbragar River Underbridge	Туре 3
	C03a6	523.915	Elong Elong Underbridg	Types
	C03a6	524.087	Elong Elong Under v.dge	i ype 3
	C03a6	525.186	Elong Elong C'nderbridge	Туре 3
	C03a6	526.975	Elong Fichg Underbridge	Type 3
	C03a6	549.077	Elong Elo. g Unde cridge	Ţvj`d 3
	C03a7	553.414	Una sibridae	Туре 3
	C03a8	41t 900	Merrygoen Underbidge	Type 6 Culvert
	C03a8	424.172	MonygoenConderbridge	Туре 3
	CONalu	¹ ن0.47٥	Tooga lan Creak Underbridge	Туре 3
N. N	C03p1+	422 573	a leilrex Uederbridge	Туре 3
his	C03a11	440.67	Ns.'rex Underbridge	Type 6 Culvert
	C03a'1	44.3.293	Piambra Underbridge	Type 6 Culvert
. 0	CU3a12	449.131	Piambra Underbridge	Туре 3
. rns	C03a13	153.505	Ulindah Creek Underbridge	Туре 3
bour	C04h1	456.012	Binnaway Creek Underbridge	Туре 3
nell ci	ບົ;∔a3	462.039	Binnaway Underbridge	Туре 3
P. el	C04a5	470.218	Ulindah Creek Underbridge	Туре 3
	C04a6	482.351	Weetaliba Underbridge	Туре 3
P.A.	C04a6	483.277	Weetaliba Underbridge	Туре 3
	C04a6	484.060	Weetaliba Underbridge	Туре 3
	C04a6	485.331	Weetaliba Underbridge	Туре 3
	C04a6	496.033	Oakey Creek Underbridge	Туре 3
	C05a1	529.736	Premer Underbridge	Туре 3
	C05a1	529.917	Cox's Creek Underbridge	Туре 3
	C05a1	530.997	Premer Underbridge	Туре 3
	C05a1	531.466	Premer Underbridge	Туре 3
	C05a1	531.888	Premer Underbridge	Туре 3
	C05a1	532.250	Premer Underbridge	Туре 3
	C05a1	533.739	Premer Underbridge	Type 6 Culvert

	Section	Location	Structures Upgrade Summary	Proposed Bridge Type (refer to WP No. 11)
	C05a1	535.811	Yannergee Underbridge	Type 6 Culvert
	C05a1	538.547	Yannergee Underbridge	Туре 3
	C05a1	539.734	Underbridge	Type 6 Culvert
	C05a1	565.023	Underbridge	Type 6 Culvert
	C05a1	529.736	Premer - underbridge	Туре 3
	C05a2	583.146	Caroona - underbridge	Туре 3
	C05a2	584.856	Underbridge	Туре 3
	C10	569.930	Narrabri - underbridge	Туре 3
	C10	571.605	Narrabri – Mulgate Creek - underbridge	Туре 3
	C11	581.180	Narrabri - underbridge	Type 6 Cul 'c."
	C11	582.605	Edgeroi – Spring Creek - underbridge	Types
	C11	586.200	underbridge	Туре 3
	C11	589.300	Edgeroi Underturidge - underbridge Edgeron Lunde kuitere	Type 6 Culvert
	C11	599.445	unde bridge	Typ) ປ Culvert
	C11	600.500	und voridge	Туре 3
	C11	626 v10	underbridge	Type 6 Culvert
	<u>C11</u>	631.085	Guiley Understindge -	Type 6 Culvert
	01	641.540	Guiley Underbridge -	Туре 3
-his	C11	647.085	urierbridge	Type 6 Culvert
	<u>C11</u> C11	649.320 343.520	Gurley - underbridge Gurley - underbridge	Type 6 Culvert Type 6 Culvert
0	<u>.011</u>	653 €∠ ⁰	Moree - underbridge	Type 6 Culvert
albourne	Table A-3	Possible B	ridge Upgrade works – Existing	Class 3 track
Me nef	Section	Location	Structures Upgrade Summary	Proposed Bridge Type
	C17a2	666.340	Moree Underbridge - underbridge	Туре 3
ro,	C17a2	666.341	Moree - underbridge	Type 3
Ŧ	C17a2	666.645	Moree - underbridge	Type 3
	UTAZ	000.945	woree - underpridde	I VDE 3

Section	Location	Structures Upgrade Summary	Proposed Bridge Type
C17a2	666.340	Moree Underbridge - underbridge	Туре 3
C17a2	666.341	Moree - underbridge	Туре 3
C17a2	666.645	Moree - underbridge	Туре 3
C17a2	666.945	Moree - underbridge	Туре 3
C17a2	667.210	Moree - underbridge	Туре 3
C17a2	667.370	Moree - underbridge	Туре 3
C17a2	667.945	Moree - underbridge	Туре 3
C17a2	668.720	Moree - underbridge	Type 6 Culvert
		Camurra - Gwydir River -	
C17a4	676.220	underbridge	Туре 3
		Camurra Underbridge -	
C17a4	676.221	underbridge	Туре 3
C17a4	680.615	Camurra Underbridge	Туре 3
D01a4	690.830	Camurra Underbridge	Type 6 Culvert
D01a	691.025	Camurra Underbridge	Туре 3
D01a	696.990	Milguy Underbridge	Туре 3
D01a	706.250	Milguy Underbridge	Type 6 Culvert
D01a	708.445	Milguy Underbridge	Type 6 Culvert

Section	Location	Structures Upgrade Summary	Proposed Bridge Type
D01a	711.620	Milguy Underbridge	Туре 3
D01a	714.820	Crooble Underbridge	Type 6 Culvert
D01a	716.850	Crooble Underbridge	Type 6 Culvert
D01a	721.030	Crooble Underbridge	Туре 3
D01a	723.875	Crooble Underbridge	Type 6 Culvert
D01a	725.275	Crooble Underbridge	Type 6 Culvert
D01a	734.945	Croppa Creek Underbridge	Type 6 Culvert
D01a	735.115	Croppa Creek Underbridge	Type 6 Culvert
D01a	736.210	Croppa Creek Underbridge	Туре 3
D01a	737.555	Croppa Creek Underbridge	Туре 3
D01a	740.665	Croppa Creek Underbridge	Туре 3
D01a	741.345	Croppa Creek Underbridge	Туре 3
D01a	742.240	Croppa Creek Underbridge	Туре 3
D01a	742.690	Croppa Creek Underbridge	Туре 3
D01a	744.555	Croppa Creek Underbridge	Туре 3
D01a	750.965	North Star Underbridge	Type 6 Culvert

<u>uver</u> <u>yea</u> <u>yea</u> <u>yea</u> <u>yea</u> <u>yea</u> <u>yea</u> <u>ude</u> <u>yea</u> <u>yea</u> <u>ude</u> <u>yea</u> <u>yea</u> <u>yea</u> <u>yea</u> <u>ude</u> <u>yea</u> <u>yea</u> <u>yea</u> <u>ude</u> <u>yea</u> <u>yea</u> <u>yea</u> <u>ude</u> <u>ude</u>

Melbournerse content of the study of the stu

Section Name	Reference case Section	Length (km)	Northbound Journey Time Estimate - Reference case (mins)	Southbound Journey Time Estimate - Reference case (mins)	Northbound Journey Time Estimate - Upgraded Track (mins)	Southbound Journey Time Estimate - Upgraded Track (mins)			
Melbourne to Mangalore	A01	117	88	77	88	77			
Wodonga (north) to Junee	A04	163	106	97	106	97			
Junee (east) to Illabo	B02a1	15	8.25	11	8.25	11			
Illabo to Bethungra (south)	B02a2	11	8	6	8	6			
Bethungra (south) to Bethungra (north)	B03	8	9.25	6	9.25	6			
Cootamundra (south) to Bauloora	B08	9	12.5	10 5	12.5	10			
Narromine (south) to Narromine	B20a2	6	5.5	8.75	5 010	8.5			
Narromine to Narromine (east)	C01a1	8	10'5	6.75	10	5			
Narrabri (south) to Narrabri (north)	C10 029	15	18.2 UP	23.75	18.5	23			
Moree (north) to North Star	0014	78	4875	46.5	48.75	46.5			
Yelarbon to Inglev ບາປ	D.76.A	34	24	20	24	20			
Oakey to Gowne	D16A	12	14	11	14	11			
Gowrie to Gatton	∟۲_4C	41	25	47	25	47			
Gowrie to Gatton 'o w speed	D24c2	57	38.75	57.25	38.75	57.25			
Urnits	rep								
The ai	ferent journey	times in th	ne northbound a	ind southbound d	irections are ge	enerally due to			
Gradier	nts and speed	restriction	s at critical loca	tions (such as at	the bottom of g	radients).			
There	is a large differ	ence betw	veen the northbo	ound and southbo	ound journey tin	nes for			
sections D24C and D24C2. It is assumed that this difference will be considered and									

Table B-1 Southbound journey time estimates

managed during the timetable planning in Stage 3 of the study.

Table C–1 Cost per minute saved (complete)

Journey time improvement	Section Name	Reference case alternative	Journey time saving (minutes)	Incremental cost (\$)	Cost per minute saved
D15C	Oakey bypass	D15A	2.75	-\$89,840,400	-\$32,669,236
D05C	North Star to Yelarbon	D02+ D03+ D04	9.75	-\$18,322,100	-\$1,879,190
C58	Narrabri bypass	C10	12.75	\$26,862,400	\$2,106,855
C70	Narromine bypass	B20a2+ C01a1	9.25	\$24,006,700	\$2,595,319
Upgrade	Narrabri (north) to Moree (south)	C11 0	33.5	\$112,048,900	\$3,069,833
B17	Stockinbingal bypass	B11, 312+ B15+ B1	9	\$31,296,800	\$3,477,422
Upgrade	Moree (south) to Moree (east)	C17a1	1.5	\$5,563,400	\$3,708,933
C59b	Spring Ridge to Breeza	C05a2+ C064,+ C60+ C06a2+ C.Va1	24.5	\$92,200,200	\$3,763,273
B01c & B14	Junee to Stockinbingal	B01+ E02a1+ F02a2+ E03 304+ E05+ 207+ B02+ B10+	e	\$150,421,800	\$3,832,403
C03b7	Piambra to Ulinda Acviation	B11; £12 Cu3a13+ C6,\$b1+ 264a4 - 204a5	39.25 5.75	\$22,405,300	\$3,896,574
B14a	Illabo to Struckinbing a	B0.2 2+ B03+ B04+ B05+ B07+ B08+	0.70	\$139,685,100	\$4,169,704
0001.4	rkine mi berio	B10+ B11+ B12	33.5	\$04040500	# 4,000,040
CU3D4		C03a8	8	\$34,346,500	\$4,293,313
057	Dubec cypase	C02	7.5	\$32,226,400	\$4,296,853
C17b2	Camurro deviation	C17a4	3.75	\$19,380,500	\$5,168,133
C62	Prens. o Emorald Hill	C04a10+ C05a1+ C05a2 + C06a1+ C60+ C06a2+ C07a1+	62.25	\$374,276,800	\$6,012,479
B19a	Finkes hun vis	CU7az B10	02.20	\$18 467 100	\$6 715 309
D095 & 017C	Cecilya a to Gowrie via Wyreema West	D19 D140: D150: D164	2.75	\$21 737 300	\$7 245 767
Ulu urado	Ducing (north east) to Barbigal (west)	D14C+ D15C+ D16A	3	\$18 988 000	\$7 595 200
Upgrade	Parkes (north) to Narromine (south)	C03a1	2.5	\$1/9 79/ 300	\$7,333,200 \$7,781,522
Code	Oakov Crock to Promor doviation	B20a1	19.25	\$77 318 400	\$7,701,322 \$9,926,290
C04b3	Boomlov doviation	C04a7	8.75	\$60.037.000	\$0,030,309 \$9,904,504
	Boothey deviation	C03a6	6.75	\$00,037,900 \$2,455,000	\$0,094,004 \$0,000 c00
Upgrade	Nerremine (west) to Premer (Central)	C04a8	0.25	φ∠,400,900 ¢20,522,200	Φ9,023,000 \$10,075,500
Opgrade C16b	Premer bypass	C01a2 C04a8+ C04a9+ C04a10	3.75	۵30,533,200 \$24,974,400	\$11,099,733
B11a	Yeo Yeo deviation	B11	1.25	\$13,936,900	\$11,149,520

	C03b5	Toogarlan deviation	C03a10	25	\$32,186,200	\$12,874,480
	C03b2	Muronbung deviation	C03a4	3	\$41,640,300	\$13,880,100
	C17b1	Moree bypass	C17a2	45	\$63,292,500	\$14,065,000
	Upgrade	Ulinda (south) to Oakey Creek	C04a6	2 75	\$39,311,200	\$14,294,982
	Upgrade	Muronbung (north) to Boomley (south)	C0325	1 25	\$20,111,100	\$16,088,880
	Upgrade	Premer (east) to Spring Ridge	C05a1	7	\$115,630,200	\$16,518,600
	Upgrade	Moree (east) to Moree (north-east)	C17a2	2 25	\$39,276,021	\$17,456,010
	Upgrade	Narromine (south) to Narromine	B20a2	0.5	\$9,152,000	\$18,304,000
	Upgrade	Turilawa (high speed west) to Turilawa	DEUGE	0	\$9,397,000	\$18,794,000
		(low speed south)	COlaí	0.5		
	B09	Cootamundra bypass	ら07+ B08	11	\$206,885,500	\$18,807,773
	C03b1	Barbigal deviation	C03a2	1.75	\$34,205,200	\$19,545,829
	C03b6	Piambra deviation	C03a12	9.5	\$10,031,500	\$20,063,000
	Upgrade	Barbigal (west) to Barbigal (east)	C039.	0.5	\$10,260,200	\$20,520,400
	C04b2	Ulinda deviation	204a5	1	\$21,799,500	\$21,799,500
	Upgrade	Toogarlan (north) to Piannora (south)	C03211	1.75	\$41,742,100	\$23,852,629
	Upgrade	Spring Ridge to Trainowa (high speed			\$121,149,100	\$25,505,074
	Lingrada	West) Particel (as i) to Muruphung (as with)	C0522	4.75	¢25 701 200	¢25 701 200
	Upgrade	Barbigar (48) to Paco alive (port)	CC: 93	1	\$25,701,200 \$24,740,000	\$25,701,200
	Upgrade	Big a physical (source) to this physical (not a),	C03a6	1.25	\$34,740,000 \$9,044,600	\$27,792,000 \$22,179,400
	Upgrade	Merry con (next is to Tac ler on (next)	C03a12	0.25	\$0,044,000 \$2,045,600	\$32,170,400 \$35,782,400
	Upgrade	Werrie Creuklich and String (Scoth)	C03a9	0.25	\$0,940,000 \$17,000,000	\$35,762,400 \$35,901,900
		Option 2 of the sector (uppe)	C06a1+ C60+ C06a2	0.5	\$17,900,900	\$35,801,800
	Upgrace	Dakey "Teek to "Teme" (wist)	C04a7	0.75	\$27,393,200	\$30,524,267
	Upgrade	P events for (n_{0}, n_{1}) to Premier (east)	C04a10	0.25	\$10,120,700	\$40,482,800
	Upgrade	Line (pert) to Jubbo (north east)	C02	0.5	\$21,575,300	\$43,150,600
	Upgrade	U':nda (norn 13 Ulinda (south)	C04a5	0.25	\$10,918,900	\$43,675,600
	Upgrate	Sogaria. (south) to Toogarian (north)	C03a10	0.5	\$23,045,300	\$46,090,600
	5 // 3	Fran, pton to Cootamundra deviation	B07	1	\$46,498,100	\$46,498,100
~	oupgrade	vierrygoen (south) to Merrygoen (north)	C03a8	0.5	\$23,691,000	\$47,382,000
	Upgrade	Narromine to Narromine (east)	C01a1	0.25	\$14,567,100	\$58,268,400
	Upgraa	Muronbung (south) to Muronbung (north)	C03a4	0.25	\$14,640,800	\$58,563,200
	BUSA	Frampton deviation	B05	0.5	\$33,905,300	\$67,810,600
	Upgrade	Boomley (north) to Merrygoen (south)	C03a7	0.25	\$25,848,200	\$103,392,800
	D09B &	Cecilvale to Gatton south of Toowoomba	D14C+ D15C+ D16A+	0.5	\$146,147,200	\$292,294,400
	B03a	Bethungra deviation	D240 D02	0.0	\$351 591 800	\$1 406 367 200
	2004	Boarding a domation	DUJ	0.25	<i>4001,001,000</i>	φ., ico,coi,200

Upgrade	Piambra (north) to Binnaway	C03a13	0	\$20,304,200	#DIV/0!
Upgrade	Binnaway (east) to Ulinda (north)	C04a4	0	\$3,823,500	#DIV/0!
Upgrade	Premer (central) to Premer (north)	C04a9	0	\$2,630,100	#DIV/0!
D24C2	Gowrie to Gatton low speed	D24C	-13.75	\$970,800,900	-\$70,603,702

13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 14.2

Referen ce case Section	Length (km)	Journey Time Estimate - Reference case (mins)	Journey Time Estimate Upgraded Track (mins)	Journe y time saving (Refere nce case to upgrad e - mins)	Reference case cost (\$K)	Upgrade cost (\$K)	Cost (Upgrade – Reference case)	Cost per minute saved (Upgrad e - \$K)	Deviations Section	Length (km)	Journey time Estimate – Deviations (mins)	Journey time saving	Deviation cost (\$K)	Cost (Deviation – Reference case - \$K)	Deviations - Cost per minute saved (\$K/min))
A01	117	88	N/A	0	0	00	0	N/A	N/A						
A02	188	106	N/A	0	0	0		N/A	N/A						
A03a	5	4	N/A	0	6	Ũ	0	NI, A	N/A						
A04	163	106	N/A	0	0	0	5	N/A	N/A						
B01	4	3.5	N/A	1	3	0	0	N/A	N/A						
B02a1	15	8.25	N/A	0	6		0	N/A	N/A						
B02a2	11	8	N77.	0	0	0	0	N/A	N/A						
B03	8	9.25	N/A	2	0	0	0	N/A	B03a	8	9	0.25	351,592	351,592	1,406,367
B04	4	2.5	N/A	0	0 5	0	0	N/A	N/A						
B05	8	6.5	NG	0	0	0	0	N/A	B05a	5	6	0.5	33,905	33,905	67,810
B07	6	4	N/A	0	0	0	0	N/A	B07a	5	3	1	46,498	46,498	46,498
B08	9	12.5	NA	0	0	0	0	N/A	N/A						
B10	10	8	N/A	0	0	0	0	N/A	N/A						
B11	4	2.75	N/A	0	0	0	0	N/A	B11a	3	1.5	1.25	13,937	13,937	11,149
B12	8	6 75	N/A	0	0	0	0	N/A	N/A						
B15	1	21	N/A	0	0	0	0	N/A	N/A						
B16	8	5.5	N/A	0	0	0	0	N/A	N/A						
B18	159	96.75	N/A	0	0	0	0	N/A	N/A						
B19	6	7.25	N/A	0	0	0	0	N/A	B19a	5	4.5	2.75	18,467	18,467	4,924
B20a1	100	84	64.75	19.25	0	149,794	149,794	7,781	N/A						

Table C–2 Cost per minute saved estimates -Upgrades and deviations
Referen ce case Section	Length (km)	Journey Time Estimate - Reference case (mins)	Journey Time Estimate Upgraded Track (mins)	Journe y time saving (Refere nce case to upgrad e - mins)	Reference case cost (\$K)	Upgrade cost (\$K)	Cost (Upgrade – Reference case)	Cost per minute saved (Upgrad e - \$K)	Deviations Section	Length (km)	Journey time Estimate – Deviations (mins)	Journey time saving	Deviation cost (\$K)	Cost (Deviation – Reference case - \$K)	Deviations - Cost per minute saved (\$K/min))
B20a2	6	5.5	5	0.5	0	9,152	9,152	18 3 04				9.25	24,007	20,007	2,585
C01a1	8	10.25	10	0.25	0	14 597	14,567	58,268	- C70	12	6.5				
C01a2	24	20.25	16.5	3.75	0	38,533	38 733	10,275	L!∕A						
C02	12	13	12.5	0.5	23,ົ^0	4,915	21,574	43,150	C57	10	5.5	7.5	55,566	32,226	4,297
C03a1	15	12	9.5	2.5	3,031	22,7.5	15,988	7,595	N/A						
C03a2	6	5	4.5	0.5	00	1J,260	10,260	20,520	C03b1	6	3.25	1.75	34,205	35,205	19,546
C03a3	12	10.75	9.75	1	0	25,701	25,701	25,701	N/A						
C03a4	9	8	7.75	0.35	- 01	18,942	14,641	58,564	C03b2	8	5	3	45,942	41,641	13,880
C03a5	12	9.5	3.25	1.25	4,005	21,144	20,111	16,088	N/A						
C03a6	27	26.25	25	1.25	3,031	37,771	34,741	27,792	C03b3	26	19.5	6.75	63,068	60,038	8,895
C03a7	5	3.75	3.5	6	0	25,848	25,848	51,696	N/A						
C03a8	13	13	12.5	0.5	0	23,691	23,691	47,382	C03b4	9	5	8	34,347	34,347	4,293
C03a9	4	3.25	3	0.25	0	8,946	8,946	35,784	N/A						
C03a10	7	6.5	90	0.5	0	23,045	23,045	46,090	C03b5	6	4	2.5	32,186	32,186	12,874
C03a11	13	10	3.25	1.75	3,872	45,614	41,742	23,852	N/A						
C03a12	2	1.5	1.25	0.25	2,821	10,865	8,044	32,176	C03b6	2	1	0.5	12,852	10,031	20,063
C0. 13	4	3.5	3.5	0	0	20,304	20,304	-	N/A						
C04b1	4	3.25	3.25	0	16,294	18,091	1,797	-	N/A						
C04a4	4	3.75	3.75	0	0	3, 824	3,824	-	N/A						
C04a5	5	3.75	3.5	0.25	0	10,919	10,919	43,676	C04b2	4	2.75	1	21,800	21,800	21,800
C04a6	27	22	19.25	2.75	4,033	43,344	39,311	14,294	N/A						
C04a7	27	24.5	23.75	0.75	0	27,393	27,393	36,524	C04b3	23	15.75	8.75	77,318	77,318	8,836

Referen ce case Section	Length (km)	Journey Time Estimate - Reference case (mins)	Journey Time Estimate Upgraded Track (mins)	Journe y time saving (Refere nce case to upgrad e - mins)	Reference case cost (\$K)	Upgrade cost (\$K)	Cost (Upgrade – Reference case)	Cost per minute saved (Upgrad e - \$K)	Deviations Section	Length (km)	Journey time Estimate – Deviations (mins)	Journey time saving	Deviation cost (\$K)	Cost (Deviation – Reference case - \$K)	Deviations - Cost per minute saved (\$K/min))
C04a8	2	2.25	2	0.25	0	2,456	2,456	9,221				2.25	24,974	24,974	11,100
C04a9	1	0.5	0.5	0	0	2.30	2,630	2	C165	4	2.5				
C04a10	2	2	1.75	0.25	0	40,121	10 21	40,484	Cer						
C05a1	36	28.25	21.25	7	16,683	132,313	115,631	16,5¹Ն	N/A						
C05a2	27	21.75	17	4.75	N° - K	121.145	121,149	35,505	N/A						
C06a1	3	2	1.5	0.5	0	9,397	9,397	18,794				0.5	28,365	17,900	35,801
C60	1	0.75	0.75	6	10, <r 5<="" td=""><td>10'65</td><td>C.</td><td>N/A</td><td>C59</td><td>5</td><td>4</td><td></td><td></td><td></td><td></td></r>	10'65	C.	N/A	C59	5	4				
C06a2	2	1.75	N/A	0	0	0	0	N/A							
C07a1	19	10.75	J/A	0	ee	C	0	N/A	N/A						
C07a2	63	38	N//	0 6	Vatu	0	0	N/A	N/A						
C08	29	18	N/A	0	e	0	0	N/A	N/A						
C09	29	16.5	NA	0		0	0	N/A	N/A						
C10	15	18.5	18.5	0	27,977	38,097	10,120	-	C58	11	5.75	12.75	54,840	26,863	2,107
C11	85	९८ उ	52	36.5	0	112,049	112,049	3,069	N/A						
C17a1	4	3.75	2.25	1.5	0	5,563	5,563	3,708	N/A						
C17a2	7	9.25	7	2.25	17,103	56,379	39,276	17,456	C17b1	9	4.75	4.5	80,396	63,293	14,065
C1740	6	4.25	N/A	0	26,035	26,035	0	N/A	N/A						
C17a4	5	5.5	N/A	0	21,778	21,778	0	N/A	C17b2	3	1.75	3.75	41,159	16,381	5,168
D01a		48.75	N/A	0	137,467	137,467	0	N/A	N/A						
D02a	26	15	N/A	0	55,598	55,598	0	N/A	-			9.75	180,094	-19,322	-1,879 saving
D03c	13	7	N/A	0	76,008	76,008	0	N/A	D05C	59	33.25				Saving
D04a	34	21	N/A	0	66,810	66,810	0	N/A							

Referen ce case Section	Length (km)	Journey Time Estimate - Reference case (mins)	Journey Time Estimate Upgraded Track (mins)	Journe y time saving (Refere nce case to upgrad e - mins)	Reference case cost (\$K)	Upgrade cost (\$K)	Cost (Upgrade – Reference case)	Cost per minute saved (Upgrad e - \$K)	Deviations Section	Length (km)	Journey time Estimate – Deviations (mins)	Journey time saving	Deviation cost (\$K)	Cost (Deviation – Reference case - \$K)	Deviations - Cost per minute saved (\$K/min))
D06a	34	24	N/A	0	88,416	88,416	0	N/A	N/A						
D07c	74	47	N/A	0	230,922	2÷	0	N/A	N/A						
D08a	23	20	N/A	0	89,904	\$9,904	0	N/A	∕A						
D14C	31	19	N/A	0	104-337	104,337	0	N/^	N/A						
D15a	18	12	N/A	0	153,70 <u>2</u>	150 762	earai	∿ /A	D15C	16	9.25	2.75	63,861	-89,841	-32,669 saving
D16a	12	14	N/A)	5,291	55,20	0	N/A	N/A						
D24c	41	25	N/A	0	¢12,975	912,975	0	N/A	D24c2	57	38.75	-13.75 (longer)	1,883,775	970,800	longer
D25c	29	14	N/A	0	223,976	22 3,976	0	N/A	N/A						
D26c	56	35	N/A	0 9	351,005	351,005	0	N/A	N/A						
D28a	34	18	N/A	0	2	0		N/A	N/A						
Me	The state of the s	e final	st enten repor	t of t	P										

Reference case Sections	Length (km)	Journey Time Estimate - Reference case (mins)	Journey Time Estimate - Upgraded Track (mins)	Journey time saving	Reference case cost (\$K)	Upgrade cost (\$K)	Cost (upgrade – Reference case - \$K)	Cost per minute saved (Upgrade - \$K/min)	Major Deviatio ns Section	Length (km)	Journey Time Estimat e – Major Deviatio ns (mins)	Journey time saving	Deviation cost (\$K)	Cost (Deviation – Reference case - \$K)	Deviation Cost per minute saved (\$K/min)
B01+ B02a1+ B02a2+ B03+ B04+ B05+ B07+ B08+ B10+ B11+ B12	86	72	72	o aper wi	o as pro of the Rail	alice ingnn iperse	o St lent St ded pp	endice	B01c & 514	51	32.75	39.25	150,422	150,422	3,832
B02a2+ B03+ B04+ B05+ B07+ B08+ B10+ B11+ B12	68	60.25 SWOT	Sbane Sbane Sbane	t nash	eendi	00	0	N/A	B14a	39	26.75	33.5	139,685	139,685	4,170
B07+ B08	15	16.5 9	16.5	0	0	0	0	N/A	B09	10	5.5	11	206,886	206,886	18,807
B11+ B12+ B15+ B16	27	16 1 10	16	0	0	0	0	N/A	B17	13	7	9	31,297	31,297	3,477
C03a13+ C04b1+ C04a4+ C04a5	10	14.25	14	0.25	9,938	55,153	45,215	180,860	C03b7	11	8.5	5.75	38,699	16,294	3,897
C04a10+	154	104.5	92	12.5	27,148	283,445	256,297	20,503	C62	75	42.25	62.25	401,424	27,148	6,012

Table C–3 Cost per minute saved estimates – Major deviations

Reference case Sections	Length (km)	Journey Time Estimate - Reference case (mins)	Journey Time Estimate - Upgraded Track (mins)	Journey time saving	Reference case cost (\$K)	Upgrade cost (\$K)	Cost (upgrade – Reference case - \$K)	Cost per minute saved (Upgrade - \$K/min)	Major Deviatio ns Section	Length (km)	Journey Time Estimat e – Major Deviatio ns (mins)	Journey time saving	Deviation cost (\$K)	Cost (Deviation – Reference case - \$K)	Deviation Cost per minute saved (\$K/min)
C05a1+ C05a2 + C06a1+ C60+ C06a2+ C07a1+ C07a2+					s pro	auced	ent St	endice	5.						
C05a2+ C06a1+ C60+ C06a2+ C07a1	50	37	31.75	5.25 W	10,4.4 Rais	Perse	130,547	24,866	C59b	23	12.5	24.5	102,665	92,201	3,762
D14C+ D15C+ D16A	61	45	4519	Inlan	31,7,330	N/A	N/A	N/A	D09B & D17C	53	39.25	3	245,227	223,489	7,246
D14C+ D15C+ D16A+ D24C	101.9	70	sbane	of the	1,226,30 4	N/A	N/A	N/A	D09B & D36c1	94	66.75	0.5	1,282,61 1	1,136,46 4	292,294
Me	albour by th	efinal	repor												

Table D-1: Environment and land use issues matrix

Section	Enviro	nmental	constrai	nts				Land u	se const	raints				
	Flora and Fauna	Historic Heritage	Undigenous Heritage	Flooding Impacts	Protection	♦ Noise	Constructio n Impacts	Zoning – Residential	Zoning – Environ- ment	Residential – Rural / Urban	Mining Titles / Leases	Irrigation Areas	State Forests	Community Impacts
Reference Case		, (e	6										
Melbourne to Wodonga		90		x		.es.								
Wodonga to Parkes	05	Х	e de		6	Х		Х		Х				
Parkes to Dubbo	39.00	¥.	01.7	20	e	Х		Х		Х				
Dubbo (east) to Binnaway (east)	X	v	600	Х		Х		Х		Х				
Binnaway (east) to Emerald Hill		e		Х		Х		Х		Х				
Emerald Hill to Moree	Ro	X	6			Х		Х		Х				
Moree (north) to Inglewood	X	. 3	Х	Х	Х			Х		Х		Х	Х	
Inglewood to Cecilvale	< x		Х		Х			Х		Х	Х	Х		
Cecilvale to Gown	×				Х	Х		Х		Х				
Gowrie to G.andchester / Rose, uod	X	Х	Х		Х	Х	Х	Х		Х	Х			
Grand hester / Rosewond to Acade Ridge	Х	Х	Х		Х	Х	Х				Х			
Deviations														
Junee to Sto kinoingal	Х	Х						Х		Х	Х			
Illabo to Stockint nyal	Х									Х	Х			
Refi.ungra deviation		Х					Х			Х				
Frampton deviation	Х													
Frampton to Cootamundra deviation (south)	Х													Х
Cona mundra bypass	Х						Х			Х				
Yeo Yeo deviation										Х				
Stockinbingal bypass	Х									Х				
Parkes deviation										Х	Х			Х

ARTC

	Section	Enviro	nmental	constrai	nts				Land u	se const	raints				
		Flora and Fauna	Historic Heritage	Indigenous Heritage	Flooding Impacts	Protection Areas	Noise	Constructio n Impacts	Zoning – Residential	Zoning – Environ- ment	Residential – Rural / Urban	Mining Titles / Leases	Irrigation Areas	State Forests	Community Impacts
-	Narromine bypass					1	•				Х	Х	Х		
-	Dubbo bypass	Х		×,		10.1					Х		Х		
-	Baribigal deviation		JUL	Х	*9		~S'			Х					
-	Muronbong deviation	Х	0	Х		i	C			Х		Х			
-	Boomley deviation	Х	0.	X	6	200				Х		Х			
-	Merrygoen deviation			0							Х	Х			
-	Toorgarlan deviation		P	5	3				Х		Х	Х			
-	Piambra deviation	23		110				Х				Х			
-	Piambra to Ulinda deviation			0								Х			
-	Ulinda deviation	e	N									Х			
-	Premer deviation											Х			
-	Oakey Creek to irremer West de nation	À										Х			
-	Premer to Emerald Hill	Х			Х	Х						Х		Х	
-	Spring Ridge to Brc ere deviation	Х			Х							Х			
-	Werris Creek hind speed hangle											Х			
-	Narrabri Lypass											Х	Х		
-	Cathina deviation												Х		
1	Moree bypass			Х							Х	Х	Х		Х
	North Stor + Crelarbon	Х		Х	Х	Х						Х			Х
-	Cecil rale to Gowrie (via Wyreema West)	Х		Х			Х		Х		Х	Х			
-	Cecilvale to Gatton south of Toowoomba	Х	Х	Х			Х	Х			Х				Х
-	Oakey bypass	Х													
-	Gowrie to Gatton (low speed)	Х	Х	Х		Х	Х	Х			Х			Х	

Table D-2: Environment and land use risk scoring

Section	Key Issues	Risk	score		Comments / Opportunities
		Е	L	С	
Reference Case					
Melbourne to Wodonga	None	1	0	0	■ n/a
Wodonga to Parkes	 Residential areas (Bethungra Custamundra, Stockinbingal, Parkes) 	1	1 es	1	■ n/a
Parkes to Dubbo	 Residential areas (Nanomine, Dubbo) 	10	1	1	■ n/a
Dubbo (east) to Binnaway (east)	 Macquarie River Rail Pringe – homage listed Goonoo State Forest near Phomley Residential areas (Meiny goen, Finnaway) 	2	1	2	Consider Dubbo bypassAvoid works near BoomleyConsider Merrygoen bypass
Binnaway (east) to Emerald Hill	 Kesidential areas (Weetaldea, Prenier, Spring Ridge, Wentis Creek, Ereeze Curlewis, Gunnedah) 	1	1	1	■ n/a
Emerald Hill to Moree	 Residential are ອວ (Bogດເວຍ, , Baan Baa, Narrabri, Murea) 	1	1	1	■ n/a
Moree (north) to nglewood	 Potentie impacts during upgrade works through Wheiston Ctale Forest Residential areas (North Star, Inglewood) Passes through floodplain 	2	2	2	Minimise impacts in Whetstone State ForestConsider flooding in design.
Inglewood to Cecilvale (007 & D08)	Traverses the corner of Bringalily State Forest and passes near Devine State Forest	3*	3*	3*	 Realign around Bringalily State Forest (would reduce risk score to 2), but avoid Devine State Forest.
Melbor final	Mineral development leaseIrrigation area				 Minimise land use impacts (e.g. land take and severance) through irrigation areas.
e	 Residential areas (Brookstead) 				
Cecilvaາ ະ ເວ Gowrie (D14, D15, D16)	 Residential areas (Oakey, Kingsthorpe) 	1	2	2	 Consider Oakey bypass
Gowrie to Grandchester / Rosewood (D24c, D25c)	 Noise in Gatton, Forest Hill and Lockyer Valley Construction and access impacts in range areas Mining titles 	2	2	2	 Optimise alignment near Gatton and Forest Hill to minimise noise impacts Avoid landfill sites and prohibited areas

,	Section	Key Issues	Risk	score		Comments / Opportunities
			E	L	с	
		Prohibited area east of GowrieLandfill sites				
	Grandchester / Rosewood to Acacia Ridge (D26c, D28a)	 Passes through Koala conservation area and areas of Essential Habitat and Regional Foxystem Passes through a mining lease Construction and access in y acts in hilly areas Indigenous and cultural heritage items and places 	Jan Jan	2 CES	3*	 Realign around Koala conservation areas (would reduce risk score to 2) Optimise to minimise impacts heritage items and Regional Ecosystem / Essential Habitat areas Avoid mining lease area
I	Deviations	135 he anider of				
(lunee to Stockinbingal B01c + B14)	 Residentiar areas (Junee) Minor al titles 	1	1	1	Benefits in bypassing Bethungra and Cootamundra.More impact to propertes than B14a
 (llabo to Stockinbingal B14a)		1	1	1	Benefits in bypassing Bethungra and Cootamundra.Less impact to properties than B01c+B14
E	Bethungra deviation (Pupa)	Beth in gra Scinchisted on Register of National Estute	2	1	2	 Reference case preferred Assess impacts on heritage listed Bethungra Spiral prior to any works
F	Frampion Jeviation (B05a)	Otential impacts to EEC	2	0	1	■ n/a
F	Frampton to Coota.nchJra deviation (B07a)	loss and fragmentation of EEC and threatened species habitat	3	1	3	 Reference case or Cootamundra Deviation preferred
(Cootamuni ra bydristi (B09)	Rural residential areas	1	1	1	 Benefits in bypassing Cootamundra.
Ň	(פר׳'כט deviation (B ¹ רי)	 Minor 	0	1	1	■ n/a
N	Clockinbingal t ຼາມຈວຣ (B17)	Minor	1	1	1	■ n/a
F	Parkes by pass (B19a)	Rural residential areasGolf course southwest of ParkesMining titles	0	2	1	 Benefits in bypassing Parkes.
1	Narromine bypass (C70)	Irrigation areasMineral mining title	0	2	1	Benefits in bypassing Narromine.Minimise land use impacts (e.g. land take and severance)

Section	Key Issues	Risk	score		Comments / Opportunities
		E	L	с	
					through irrigation areas.
Dubbo bypass (C57)	 Urban fringe residential areas 	1	2	1	 Benefits in bypassing Dubbo.
	 Irrigation areas 	16	4		 Minimise land use impacts (e.g. land take and severance) through irrigation areas.
Baribigal deviation (C03b1)	Environmental Protection land	1	2	2	 Potential zoning restrictions – base case preferred.
Muronbong deviation	EEC fragmentation impacts	2	ces	3	 Reference case preferred
(00002)	Environmental Protection land	no			
Describer deviation (OOOb 0)	Mining title	0		~	
Boomley deviation (C03b3)	EEC and threatened specify habital, tragmerention impacts with Source Stute Forest	3	2	3	 Reference case preferred
	thining licence				
Merrygoen deviation	Mi.i.).g title	0	1	1	 Benefits in bypassing Merrygoen residential area.
(CU3D4)	Rural residentia area				
Toorgarlan deviatio.	 Resident: cl areas (Lleurex) 	0	2	1	■ n/a
(C0303)	Min. r I minin a title				
Th. 150	Coal mining title				
Piambra deviation (200b6)	Coal mining title	1	1	1	■ n/a
Piambra to Ulinda deviation (C03b7)	 Coal mining title 	0	1	1	 Benefits by increasing distance to Binnaway residential area
Ulina'ร Jeviation (C04hz)	Coal mining title	0	1	1	■ n/a
Cremer deviation (C16b)	None	0	0	0	■ n/a
Oakey Cr אור ס Premer deviatio. י (C04b3)	Minor	1	0	1	■ n/a
Premer to Emerald Hill (C62)	 EEC and threatened species (koala) habitat 	2	2	2	 Optimise to avoid vegetated areas and koala habitat.
	 Floodplain 				 Avoid Trinkey State Conservation Area.
	 Passes near Trinkey State Conservation Area 				 Consider flooding in design.

Section	Key Issues	Risk	score		Comments / Opportunities
		E	L	с	
	Coal mining title				
Spring Ridge to Breeza (C59b)	 EEC and threatened species (koala) habitat Floodplain Coal mining titles 	2 101	1	2	Optimise to avoid vegetated areas and koala habitat.Consider flooding in design.
Werris Creek high speed triangle (C59)	Coal mining title	0	1es	1	■ n/a
Narrabri bypass (C58)	 Irrigation areas Mining title Mining ti	no	2	2	 Benefits in bypassing Narrabri Minimise land use impacts (e.g. land take and severance) through irrigation areas.
Camurra deviation (C17b2)	 Irrigation areas Ration performance 	0	2	2	 Minimise land use impacts (e.g. land take and severance) through irrigation areas.
Moree bypass (C17b1)	 Industrial/intensive farming areas Kural residences Sports field, drive-in theatre, farm buildings 	1	2	2	 Benefits in bypassing Moree Minimise land use impacts (e.g. land take and severance) through irrigation areas.
North Star to Ye. arbon (D05c)	 Adjacety to floodplain Close proxinity to Dthinna Dthinnawan Nature Kesetile Melaroon Desert 	2	2	2	 Avoid realigning towards Dthinna Dthinnawan Nature Reserve. Assess ecological impacts in Yelarbon Desert
Cecilvale to Cowne (via Wyreema V 'est) (ໂດຍລ & D17c)	 Noise impacts in urban fringe residential areas west of Toowoomba and in Pittsworth and Southbrook. Essential Habitat and Regional Ecosystems areas. 	3	2	3	 Reference case preferred (including Oakey bypass).
Cecilvale to Gatton south of Toowoomba (DU9b &	 Essential Habitat and Regional Ecosystem areas and extensive vegetation clearing and habitat loss 	3	2	3	 Reference case preferred (including Oakey bypass).
D36C1)	 Noise impacts south and east of Toowoomba and in Pittsworth, Southbrook, Withcott and Placid Hills. 				
V	Indigenous and Cultural heritage items and placesConstruction and access impacts in range areas.				
Oakey bypass (D15c)	None	0	0	0	 Benefit in bypassing Oakey.

	Key Issues	Risk score C			Comments / Opportunities	
		E	L	С		
Gowrie to Gatton low speed	White Mountain Forest Reserve	3	2	3	Reference case preferred	
(D24c2)	 Essential Habitat and Regional Ecosystem areas, extensive vegetation dearing, habitat less 					
	Noise impacts in Blue Mountain Heichs, Ballard and	12				
	rural areas					
	 Indigenous and Cultural heirisge items and places 			•		
	Landfill sites and sewa te treatment works	- ái				
Notes: F = Fnvironmental risk score	as the annied re	Score	e key: aior iss	ues alo	na alianment	
L = Land use risk score	We that earph	2 – co	onsidera	able iss	ues along alignment	
C = Combined environment ar *Risk may be downgraded if c	nd land use risk score	$1 - sc_{0}$	ome issi	ues alo	ng alignment	
This wo in t	ane has stu					